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Overview: BCHOICE Procedure
The BCHOICE (Bayesian choice) procedure performs Bayesian analysis for discrete choice models. Discrete
choice models are used in marketing research to model decision makers’ choices among alternative products
and services. The decision maker might be people, households, companies and so on, and the alternatives
might be products, services, actions, or any other options or items about which choices must be made (Train
2009). The collection of alternatives that are available to the decision makers is called a choice set.

Discrete choice models are derived under the assumption of utility-maximizing behavior by decision makers.
When individuals are asked to make one choice among a set of alternatives, they usually determine the
level of utility that each alternative offers. The utility that individual i obtains from alternative j among J
alternatives is denoted as

uij D vij C �ij ; i D 1; : : : ; N and j D 1; : : : ; J

where the subscript i is an index for the individuals, the subscript j is an index for the alternatives in a choice
set, vij is a nonstochastic utility function that relates observed factors to the utility, and �ij is the error
component that captures the unobserved characteristics of the utility. In discrete choice models, the observed
part of the utility function is assumed to be linear in the parameters,

vij D x0ijˇ

where xij is a p-dimensional design vector of observed attribute levels that relate to alternative j and ˇ is the
corresponding vector of fixed regression coefficients that indicate the utilities or part-worths of the attribute
levels.

Decision makers choose the alternative that gives them the greatest utility. Let yi be the multinomial response
vector for the ith individual. The value yij takes 1 if the jth component of ui D .ui1; : : : ; uiJ / is the largest,
and 0 otherwise:

uij D x0ijˇ C �ij

yij D

�
1 if uij � max.ui /
0 otherwise

Different specifications about the density of the error vector �i D .�i1; : : : ; �iJ / result in different types
of choice models: logit, nested logit, and probit, as detailed in the section “Types of Choice Models” on
page 1035. Logit and nested logit models have closed-form likelihood, whereas a probit model does not.

The past 15 years have seen a dramatic increase in using a Bayesian approach to develop new methods of
analysis and models of consumer behavior. The milestone breakthroughs are Albert and Chib (1993) and
McCulloch and Rossi (1994) for choice probit models, and Allenby and Lenk (1994) and Allenby (1997)
for logit models that have normally distributed random effects (these models are called mixed logit models).
Train (2009) extends the Bayesian procedure for mixed logit models to include nonnormal distributions, such
as lognormal, uniform, and triangular distributions.

An issue in choice models is that the quantity of relevant data at the individual level is very limited.
Respondents frequently become fatigued after answering 15 to 20 questions in a survey. Rossi, McCulloch,
and Allenby (1996) and Allenby and Rossi (1999) show how to obtain information about individual-level
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parameters within a model by using random taste variation. The lack of data at the individual level, combined
with the desire to account for individual differences instead of treating all respondents alike, presents
challenges in marketing research. Bayesian methods are ideally suited for analyzing limited data.

Bayesian methods have several advantages. First, Bayesian methods do not require optimization of any
function. For probit models and logit models that have random effects, optimization of the likelihood
function can be numerically difficult. Different starting values might lead to different maximization results.
The problem of a local maximum versus a global maximum is another issue, because convergence is not
guaranteed to find the global maximum. Second, Bayesian procedures enable consistency and efficiency to
be achieved under more relaxed conditions. When the likelihood function does not have a closed form or
there are too many parameters (as in models with random effects), simulation can be used to estimate the
likelihood function. Maximization that is based on such a simulated likelihood function is consistent only if
the number of draws in simulation rises with the sample size, and it is efficient only if the number of draws in
simulation increases faster than the square root of the sample size. On the other hand, Bayesian methods are
consistent for a fixed number of draws and are efficient if the number of draws goes up at any rate with the
sample size.

For a short introduction to Bayesian analysis and related basic concepts, see Chapter 7, “Introduction to
Bayesian Analysis Procedures.” Also see the section “A Bayesian Reading List” on page 158 for a guide
to Bayesian textbooks of varying degrees of difficulty. It follows from Bayes’ theorem that a posterior
distribution is proportional to the product of the likelihood function and the prior distribution of the parameter.
When it is difficult to obtain the posterior distribution analytically, Bayesian methods often rely on simulations
to generate samples from the posterior distribution, and they use the simulated draws to approximate the
distribution and to make the inferences.

To use the BCHOICE procedure, you need to specify the type of model for the data. You can also supply
a prior distribution for the parameters if you want something other than the default noninformative prior.
PROC BCHOICE obtains samples from the corresponding posterior distributions, produces summary and
diagnostic statistics, and saves the posterior samples in an output data set that can be used for further analysis.
The procedure derives inferences from simulation rather than through analytic or numerical methods. You
should expect slightly different answers from each run for the same problem, unless you use the same random
number seed.

PROC BCHOICE Compared with Other SAS Procedures
The underlying structure of PROC BCHOICE is similar to the structure of PROC MCMC in that both
procedures obtain samples from the posterior distributions and produce summary and diagnostic statistics
when you specify the model or the priors or both. However, they differ in that PROC MCMC is a general-
purpose Markov chain Monte Carlo (MCMC) simulation procedure that is designed to fit a wide range of
Bayesian models, whereas PROC BCHOICE is designed specifically for discrete choice models. You can
call PROC MCMC to analyze data that have any likelihood, prior, or hyperprior, as long as these functions
can be programmed by using the SAS DATA step functions. For example, you can fit choice logit and nested
logit models in PROC MCMC by using some SAS coding to specify the likelihood. PROC BCHOICE works
only with choice models, but it is customized to fit special characteristics and features in a choice model. The
syntax is quite different from PROC MCMC’s syntax. PROC BCHOICE provides a CLASS statement to
handle categorical variables, and it requires less complicated SAS coding for choice models. The default
sampling method for choice logit models when direct sampling is not available is the Metropolis-Hastings
method, which is based on the Gamerman approach, which in turn has proved to be often more efficient than
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the random walk Metropolis algorithm that PROC MCMC uses. In addition, it is difficult to fit choice probit
models in PROC MCMC.

For a standard logit choice model, you can use the TIES=BRESLOW option in the PHREG procedure. The
approach has the same likelihood as PROC BCHOICE of fitting the data. You use the STRATA statement in
PROC PHREG to specify how to define the choice set. However, this is a frequentist approach, and it does
not work for a choice model with random effects.

Getting Started: BCHOICE Procedure
The first example in this section is a simple logit conjoint analysis that illustrates some basic features of
PROC BCHOICE. The second example discusses a mixed logit model with individual-level random effects,
which has become increasingly popular.

A Simple Logit Model
This example uses a standard logit model in which the error component, �ij .j D 1; : : : ; J /, is indepen-
dently and identically distributed (iid) with the Type I extreme-value distribution, exp.� exp.��ij //. This
assumption provides a convenient form for the choice probability (McFadden 1974):

P.yij D 1/ D
exp.x0ijˇ/PJ
kD1 exp.x0

ik
ˇ/
; i D 1; : : : ; N and j D 1; : : : ; J

The likelihood is formed by the product of the N independent multinomial distributions:

p.Yjˇ/ D
NY
iD1

JY
jD1

P.yij D 1/
yij

Suppose you want a normal prior on ˇ

�.ˇ/ D N.0; cI/

where I is the identity matrix and c is a scalar. c is often set to be large for a noninformative prior.

The posterior density of the parameter ˇ is

p.ˇjY/ / p.Yjˇ/�.ˇ/

PROC BCHOICE obtains samples from the posterior distribution, produces summary and diagnostic statistics,
and saves the posterior samples in an output data set that can be used for further analysis.

In this example (Kuhfeld 2010), each of 10 subjects is presented with eight different chocolate candies and
asked to choose one. The eight candies consist of the 23 combinations of dark or milk chocolate, soft or
chewy center, and nuts or no nuts. Each subject sees all eight alternatives and makes one choice. Experimental
choice data such as these are usually analyzed by using a multinomial logit model.
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The following statements read the data:

title 'Conjoint Analysis of Chocolate Candies';

data Chocs;
input Subj Choice Dark Soft Nuts;
datalines;

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 1 1 0 0
1 0 1 0 1

... more lines ...

10 0 1 0 0
10 1 1 0 1
10 0 1 1 0
10 0 1 1 1
;

proc print data=Chocs (obs=16);
by Subj;
id Subj;

run;

The data for the first two subjects are shown in Figure 27.1.

Figure 27.1 Data for the First Two Subjects

Conjoint Analysis of Chocolate Candies

Subj Choice Dark Soft Nuts

1 0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

2 0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
0 1 1 1
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The data set contains 10 subjects and 80 observation lines. Each line of the data represents one alternative
in the choice set for each subject. It is required that the response variable, which is Choice in this study,
indicate the chosen alternative by the value 1 and the unchosen alternatives by the value 0. Dark is 1 for dark
chocolate and 0 for milk chocolate; Soft is 1 for soft center and 0 for chewy center; Nuts is 1 if the candy
contains nuts and 0 if it does not contain nuts. In this example, subject 1 chose the fifth alternative (Choice=1,
which is Dark/Chewy/No Nuts) among the eight alternatives in the choice set. All the chosen and unchosen
alternatives must appear in the data set. If you have choice data in which all alternatives appear on one line,
then you must rearrange the data in the correct form (that is, the data must contain one observation line for
each alternative of each choice set for each subject).

The following statements fit a multinomial logit model:
ods graphics on;
proc bchoice data=Chocs outpost=Bsamp nmc=10000 thin=2 diag=(AutoCorr

ESS MCSE) seed=124;
class Dark(ref='0') Soft(ref='0') Nuts(ref='0') Subj;
model Choice = Dark Soft Nuts / choiceset=(Subj) cprior=normal(var=1000);

run;

The ODS GRAPHICS ON statement invokes the ODS Graphics environment and displays the diagnostic
plots, such as the trace and autocorrelation function plots of the posterior samples. For more information
about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

The PROC BCHOICE statement invokes the procedure, and the DATA= option specifies the input data set
Chocs. The OUTPOST= requests an output data set called Bsamp to contain all the posterior samples.
The NMC= option specifies the number of posterior simulation iterations. The THIN= option controls the
thinning of the Markov chain and specifies that one of every two samples be kept. Thinning is often used to
reduce correlation among posterior sample draws. In this example, 5,000 simulated values are saved in the
Bsamp data set. The DIAG=(AUTOCORR ESS MCSE) option requests that three convergence diagnostics
be output to help determine whether the chain has converged: the autocorrelations, effective sample sizes,
and Monte Carlo standard errors. The SEED= option specifies a seed for the random number generator,
which guarantees the reproducibility of the random stream.

The CLASS statement names the classification variables to be used in the model. The CLASS statement
must precede the MODEL statement (as it must in most other SAS procedures). The REF= option specifies
the reference level.

The MODEL statement is required; it defines the dependent variable (yij ) and independent variables (xij ).
To the left of the equal sign in the MODEL statement, you specify the dependent variable that indicates
which alternatives are chosen and which ones are not chosen. The dependent variable Choice has values 1
(chosen) and 0 (unchosen). You specify the independent variables after the equal sign. The independent
variables often indicate attributes or characteristics of the alternatives in the choice set, such as Dark, Soft,
and Nuts in this example. The CHOICESET= option specifies how a choice set is defined. In this example,
CHOICESET=(Subj) because there is one and only one choice set per subject. The variable that you specify
in the CHOICESET= option must be a classification variable that appears in the CLASS statement. You
should always use the CHOICESET= option to define the choice set.

The first table that PROC BCHOICE produces is the “Model Information” table, as shown in Figure 27.2.
This table displays basic information about the analysis, such as the name of the input data set, response
variable, model type, sampling algorithm, burn-in size, simulation size, thinning number, and random number
seed. The random number seed initializes the random number generators. If you repeat the analysis and use
the same seed, you get an identical stream of random numbers.
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Figure 27.2 Model Information

The BCHOICE Procedure

Model Information

Data Set WORK.CHOCS
Response Variable Choice
Type of Model Logit
Fixed Effects Included Yes
Random Effects Included No
Sampling Algorithm Gamerman Metropolis
Burn-In Size 500
Simulation Size 10000
Thinning 2
Random Number Seed 124
Number of Threads 1

The “Choice Sets Summary” table is displayed by default and should be used to check the data entry. In
this case, there are 10 choice sets, one for each subject. All 10 choice sets display the same pattern: they
have eight total alternatives, one of which is chosen and seven of which are unchosen. PROC BCHOICE
requires that all choice sets have a pattern of the same number of total alternatives, one of which is the chosen
alternative. If there is more than one pattern among the choice sets (for example, some choice sets have nine
alternatives or some subjects chose two alternatives), a warning message appears in the SAS log and those
invalid choice sets are excluded from analysis.

Figure 27.3 Choice Sets Summary

Choice Sets Summary

Choice Total Chosen Not
Pattern Sets Alternatives Alternatives Chosen

1 10 8 1 7

The next table is the “Number of Observations” table, as shown in Figure 27.4. This table lists the number of
observations that are read from the DATA= data set and the number of nonmissing and valid observations
that are used in the analysis. PROC BCHOICE does not impute missing values. If any missing value is
encountered in a row of the DATA= data set, PROC BCHOICE skips that row and moves on to read the next
row. If the missing value causes the corresponding choice set to have a pattern different from that of the rest
of the choice sets, the entire choice set is discarded from analysis. In this example, all 80 observations are
used.

Figure 27.4 Number of Observations

Number of Observations

Number of Observations Read 80
Number of Observations Used 80
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PROC BCHOICE reports posterior summary statistics (posterior means, standard deviations, and HPD
intervals) for each parameter, as shown in Figure 27.5. For more information about posterior statistics, see
the section “Summary Statistics” on page 155.

Figure 27.5 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Dark 1 5000 1.5308 0.7943 0.1848 3.2412
Soft 1 5000 -2.4312 0.9792 -4.4882 -0.8125
Nuts 1 5000 0.9671 0.7454 -0.3255 2.6675

Before you examine the posterior summary statistics and try to draw any conclusions, you might want to
verify that the simulation has converged. Convergence diagnostics are essential to inferring from simulations
that are based on Markov chains. If the Markov chain has not converged, all conclusions that are based on
the samples might be misleading. PROC BCHOICE computes the effective sample size by default. There
are a number of other convergence diagnostics to help you determine whether the chain has converged: the
Monte Carlo standard errors, the autocorrelations at selected lags, and so on. These statistics are shown in
Figure 27.6. For details and interpretations of these diagnostics, see the section “Assessing Markov Chain
Convergence” on page 141.

The “Posterior Autocorrelations” table shows that the autocorrelations among posterior samples reduce
quickly. The “Effective Sample Sizes” table reports the number of effective sample sizes of the Markov
chain. The “Monte Carlo Standard Errors” table indicates that the standard errors of the mean estimates for
each of the variables are relatively small with respect to the posterior standard deviations. The values in the
MCSE/SD column (ratios of the standard errors and the standard deviations) are small. This means that only
a fraction of the posterior variability is caused by the simulation.

Figure 27.6 PROC BCHOICE Convergence Diagnostics

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Dark 1 0.4495 0.1427 0.0603 -0.0095
Soft 1 0.5389 0.1518 0.0730 0.0449
Nuts 1 0.4136 0.1473 0.0259 -0.0264

Effective Sample Sizes

Autocorrelation
Parameter ESS Time Efficiency

Dark 1 1078.4 4.6365 0.2157
Soft 1 904.9 5.5253 0.1810
Nuts 1 1161.6 4.3043 0.2323
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Figure 27.6 continued

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD

Dark 1 0.0242 0.7943 0.0305
Soft 1 0.0326 0.9792 0.0332
Nuts 1 0.0219 0.7454 0.0293

PROC BCHOICE produces a number of graphs, shown in Figure 27.7, which also aid convergence diagnostic
checks. The trace plots have two important aspects to examine. First, you want to check whether the mean of
the Markov chain has stabilized and appears constant over the graph. Second, you want to check whether the
chain has good mixing and is “dense,” in the sense that it quickly traverses the support of the distribution to
explore both the tails and the mode areas efficiently. The plots show that the chains appear to have reached
their stationary distributions.

Next, you want to examine the autocorrelation plots, which indicate the degree of autocorrelation for each of
the posterior samples. High correlations usually imply slow mixing. Finally, the kernel density plots estimate
the posterior marginal distributions for each parameter.

Figure 27.7 PROC BCHOICE Diagnostic Plots
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Figure 27.7 continued
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Because the chains have converged, you can go back to the posterior summary table for results and conclusions.
As seen in Figure 27.5, the part-worth for dark chocolate is 1.5 and the part-worth for milk chocolate (base
category) is structural 0; the part-worth for soft center is –2.4 and the part-worth for chewy center is structural
0; the part-worth for containing nuts is 1.0 and the part-worth for no nuts is structural 0. A positive part-worth
implies being more favorable. Hence, dark chocolate is preferred over milk chocolate, soft centers are less
popular than chewy centers, and candies with nuts are more popular than candies without nuts.

A Logit Model with Random Effects
Choice models that have random effects (or random coefficients) provide solutions to create individual-level
or group-specific utilities. Because people have different preferences, it can be misleading to roll the whole
sample together into a single set of utilities. The desire to account for individual differences, instead of
treating all respondents alike, provides challenges in marketing research. For logit models that have random
effects, using frequentist methods to optimize of the likelihood function can be numerically difficult. Bayesian
methods are ideally suited for analysis with random effects.

Choice models that have random effects generalize the standard choice models to incorporate individual-level
effects. Let the utility that individual i obtains from alternative j in choice situation t (t D 1; : : : ; T ) be

uijt D x0ijtˇ C z0ijt
i C �ijt
yijt D 1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /

D 0 otherwise

where yijt is the observed choice for individual i and alternative j in choice situation t; xijt is the fixed design
vector for individual i and alternative j in choice situation t; ˇ are the fixed coefficients; zijt is the random
design vector for individual i and alternative j in choice situation t; and 
i are the random coefficients for
individual i corresponding to zijt .

It is assumed that each 
i is drawn from a superpopulation and that this superpopulation is normal, 
i �
iid N.0;�
/. An additional stage is added to the model in which a prior for�
 is specified:

�.
i / D N.0;�
/

�.�
/ D inverse Wishart.�0;V0/

The covariance matrix�
 characterizes the extent of unobserved heterogeneity among individuals. Large
diagonal elements of�
 indicate substantial heterogeneity in part-worths. Off-diagonal elements indicate
patterns in the evaluation of attribute levels.

Consider a study that estimates the market demand for kitchen trash cans (Rossi 2013). There are four
attributes, and each has two levels: touchless opening (Yes/No), material (Steel/Plastic), automatic trash
bag replacement (Yes/No), and price (80=40). The number of all possible hypothetical types of trash cans
is 24 D 16. Including more attributes and more levels can easily become unmanageable. The study uses a
fractional factorial design, in which the first three factors are set up to be a full factorial design and the fourth
is generated as the product of the first three. This design confounds the three-way interaction with the effect
of the fourth factor, shown in Table 27.1.
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Table 27.1 Design for the Trash Can Study

Obs Touchless Steel AutoBag Price80
1 –1 –1 –1 –1
2 –1 –1 1 1
3 –1 1 –1 1
4 –1 1 1 –1
5 1 –1 –1 1
6 1 –1 1 –1
7 1 1 –1 –1
8 1 1 1 1

In Table 27.1, 1 means “Yes” and –1 means “No.” This is a balanced design, in which each level appears the
same number of times. This study assigns only two alternatives to a choice set by randomly sampling two
rows from the previous table and giving each individual 10 choice sets (or choice tasks) to pick from. For
more information about how to design a choice model efficiently, see Kuhfeld (2010).

Data were obtained by enrolling 104 people and assigning 10 choice tasks to each of them: for each task, the
participants stated their preference between two types of trash cans. The following steps read in the data:

data Trashcan;
input ID Task Choice Index Touchless Steel AutoBag Price80 @@;
datalines;

1 1 1 1 0 1 1 0 1 1 0 2 1 1 0 0 1 2 0 1 0 0 0 0 1 2 1 2 1 1 1 1 1 3 0 1
0 0 0 0 1 3 1 2 1 1 0 0 1 4 0 1 0 1 0 1 1 4 1 2 1 0 0 1 1 5 1 1 0 1 1 0
1 5 0 2 1 0 0 1 1 6 0 1 0 0 1 1 1 6 1 2 1 1 1 1 1 7 0 1 1 0 0 1 1 7 1 2
1 1 0 0 1 8 0 1 0 0 1 1 1 8 1 2 0 1 1 0 1 9 1 1 0 0 1 1 1 9 0 2 1 0 0 1
1 10 0 1 0 1 1 0 1 10 1 2 1 0 1 0 2 1 1 1 0 1 1 0 2 1 0 2 1 1 0 0 2 2 0
1 0 0 0 0 2 2 1 2 1 1 1 1 2 3 0 1 0 0 0 0 2 3 1 2 1 1 0 0 2 4 0 1 0 1 0
1 2 4 1 2 1 0 0 1 2 5 1 1 0 1 1 0 2 5 0 2 1 0 0 1 2 6 1 1 0 0 1 1 2 6 0
2 1 1 1 1 2 7 1 1 1 0 0 1 2 7 0 2 1 1 0 0 2 8 1 1 0 0 1 1 2 8 0 2 0 1 1
0 2 9 1 1 0 0 1 1 2 9 0 2 1 0 0 1 2 10 1 1 0 1 1 0 2 10 0 2 1 0 1 0 3 1

... more lines ...

2 1 2 1 1 1 1 104 3 0 1 0 0 0 0 104 3 1 2 1 1 0 0 104 4 0 1 0 1 0 1 104
4 1 2 1 0 0 1 104 5 1 1 0 1 1 0 104 5 0 2 1 0 0 1 104 6 0 1 0 0 1 1 104
6 1 2 1 1 1 1 104 7 0 1 1 0 0 1 104 7 1 2 1 1 0 0 104 8 0 1 0 0 1 1 104
8 1 2 0 1 1 0 104 9 0 1 0 0 1 1 104 9 1 2 1 0 0 1 104 10 0 1 0 1 1 0 104
10 1 2 1 0 1 0
;

proc print data=Trashcan (obs=20);
by ID Task;
id ID Task;

run;

The data for the first four choice tasks are shown in Figure 27.8.
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Figure 27.8 Data for the First Four Choice Tasks

Auto
ID Task Choice Index Touchless Steel Bag Price80

1 1 1 1 0 1 1 0
0 2 1 1 0 0

1 2 0 1 0 0 0 0
1 2 1 1 1 1

1 3 0 1 0 0 0 0
1 2 1 1 0 0

1 4 0 1 0 1 0 1
1 2 1 0 0 1

In the data, ID is the individual’s ID number, and Task indexes the number of choice tasks. The response is
Choice, which states each individual’s choice for each choice task. Touchless, Steel, AutoBag, and Price80
are the attribute variables; for each of them, 1 means “Yes” and 0 means “No.” In the data, 0 replaces the –1
values that are shown in the design matrix in Table 27.1.

The following statements fit a logit model with random effects:
proc bchoice data=Trashcan seed=123 nmc=20000 thin=4;

class ID Task;
model Choice = Touchless Steel AutoBag Price80 / choiceset=(ID Task);
random Touchless Steel AutoBag Price80 / sub=ID monitor=(1 to 5) type=un;

run;

The choice set is specified by ID (which identifies the participants) and by Task (which identifies each of the
10 choice tasks that are assigned to each participant). The variables ID and Task are needed in the CLASS
statement because they define the choice set in the MODEL statement.

In addition to the MODEL statement for fixed effects, the RANDOM statement is added for random effects.
Note that Touchless, Steel, AutoBag, and Price80 are listed as both fixed and random effects, so that their
average part-worth values in the population are estimated via fixed effects and the deviation from the overall
mean for each individual is presented through random effects. The SUB=ID argument in the RANDOM
statement defines ID as a subject index for the random effects grouping, so that each person with a different
ID has his or her own random effects. The MONITOR option requests the production of the individual-
level random-effects parameter estimates, and the MONITOR=(1 to 5) option requests the random-effects
parameter estimates for the first five subjects, (By default, PROC BCHOICE does not output results for any
individual-level random-effects parameters.) The TYPE=UN option in the RANDOM statement specifies
an unstructured covariance matrix for the random effects. The unstructured type provides a mechanism for
estimating the correlation between the random effects. The TYPE=VC (variance components) option, which
is the default structure, models a different variance component for each random effect.

Summary statistics for the fixed coefficients (ˇ), the covariance of the random coefficients (�
 ), and the
random coefficients (
i ) for the first five individuals are shown in Figure 27.9.
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Figure 27.9 Posterior Summary Statistics

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter Subject N Mean Deviation 95% HPD Interval

Touchless 5000 1.7432 0.2758 1.2225 2.2974
Steel 5000 1.0366 0.2749 0.5043 1.5951
AutoBag 5000 2.1776 0.3556 1.4799 2.8655
Price80 5000 -4.6574 0.6732 -5.9315 -3.3896
RECov Touchless, Touchless 5000 3.2690 1.0960 1.4597 5.4938
RECov Steel, Touchless 5000 -0.5786 0.9401 -2.6960 1.1540
RECov Steel, Steel 5000 2.7386 0.9952 1.1160 4.7779
RECov AutoBag, Touchless 5000 -0.6080 0.8920 -2.3911 1.2471
RECov AutoBag, Steel 5000 -0.0456 0.7354 -1.5824 1.3500
RECov AutoBag, AutoBag 5000 3.6331 1.5755 0.8716 6.5751
RECov Price80, Touchless 5000 -1.4322 1.2425 -4.0486 0.6300
RECov Price80, Steel 5000 -1.5099 1.2504 -4.1057 0.7940
RECov Price80, AutoBag 5000 -2.3795 1.7869 -5.8962 0.5972
RECov Price80, Price80 5000 7.9205 3.5695 2.3922 14.7155
Touchless ID 1 5000 0.5492 1.0522 -1.5118 2.6518
Steel ID 1 5000 -0.3691 1.1114 -2.7311 1.7119
AutoBag ID 1 5000 1.6954 1.4487 -0.8981 4.5846
Price80 ID 1 5000 -0.7483 2.3010 -5.2892 3.6146
Touchless ID 2 5000 -1.8146 0.9255 -3.6760 0.0196
Steel ID 2 5000 -1.4133 0.8567 -3.0222 0.3404
AutoBag ID 2 5000 0.4091 1.3343 -2.1911 2.9911
Price80 ID 2 5000 4.6933 1.5455 1.8588 7.8627
Touchless ID 3 5000 -0.7099 1.0230 -2.7242 1.3434
Steel ID 3 5000 0.6959 1.0397 -1.2993 2.7718
AutoBag ID 3 5000 -1.9793 1.2506 -4.3813 0.5263
Price80 ID 3 5000 3.8323 1.7134 0.3076 7.0044
Touchless ID 4 5000 -0.6107 0.9869 -2.5368 1.3259
Steel ID 4 5000 0.3235 1.0106 -1.5620 2.3570
AutoBag ID 4 5000 1.0191 1.4644 -1.5675 4.0437
Price80 ID 4 5000 -1.8942 2.3716 -6.8807 2.3238
Touchless ID 5 5000 -1.3562 1.2145 -3.7166 0.9827
Steel ID 5 5000 1.7447 1.2911 -0.7051 4.1791
AutoBag ID 5 5000 1.1826 1.5781 -1.8454 4.3037
Price80 ID 5 5000 -0.3420 2.4111 -4.9867 4.3344
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The fixed effects (Touchless, Steel, AutoBag, and Price80) are shown in the first four rows. Across all the
respondents in the data, the average part-worths for touchless opening, steel material, and automatic trash
bag replacement are all positive, indicating that most people favor those features; the average part-worth for
having to pay USD80 for a trash can instead of USD40 is negative (–4.7), which is very intuitive, because
spending more money is usually unfavorable.

The covariance estimate of the random coefficients (�
 ) is displayed by the parameters whose label begins
with “RECov”:

O�
 D

0BB@
3:3 : : :

�0:6 2:7 : :

�0:6 �0:1 3:6 :

�1:4 �1:5 �2:4 7:9

1CCA
where the dots refer to the corresponding elements in the lower part of the symmetric covariance matrix.
The covariance estimate of the random coefficients (�
 ) characterizes the variability of part-worths across
respondents. Some of the diagonal elements of the matrix are large. For example, the variance for price
(labeled “RECov Price80, Price80”) is quite large, indicating substantial unexplained difference in response
to price. Off-diagonal elements of the matrix illustrate attribute levels that tend to be evaluated similarly
(positive covariance) or differently (negative covariance) across all the respondents. The covariances between
each of the attributes (Touchless, Steel, and AutoBag) and Price80 are all negative, implying that the
respondents who prefer some of the new features are those who are also unwilling to pay a higher price for
the trash can. Therefore, offering a discounted price might be a particularly effective method of introducing
the new features to customers.

The next set of parameters that are displayed are the estimates for the individual-level random effects for the
first five respondents (see Figure 27.9). These estimates are the deviation from the overall means (which are
estimated via the fixed effects). The part-worth for touchless opening for the first respondent (who is labeled
“ID 1” in the Subject column) is 1.7 + 0.5 = 2.2.

Allenby and Rossi (1999) and Rossi, Allenby, and McCulloch (2005) propose a hierarchical Bayesian
random-effects model that is set up in a different way such that there are no fixed effects but only random
effects. For more information about this type of model, see the section “Random Effects” on page 1040 and a
follow-up example in “Example 27.4: A Random-Effects-Only Logit Model” on page 1063.
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Syntax: BCHOICE Procedure
The following statements are available in the BCHOICE procedure. Items within < > are optional.

PROC BCHOICE < options > ;
BY variables ;
CLASS variable < (options) > < . . . variable < (options) > > < / options > ;
MODEL response< (response-options) > = < fixed-effects >< / model-options > ;
RANDOM random-effects < / options > ;
PREDDIST < 'label ' > OUTPRED=SAS-data-set < options > ;

The PROC BCHOICE and MODEL statements are required. The CLASS statement, if present, must precede
the MODEL statement.

The rest of this section provides detailed syntax information for each statement, beginning with the PROC
BCHOICE statement. The remaining statements are presented in alphabetical order.

PROC BCHOICE Statement
PROC BCHOICE <options> ;

The PROC BCHOICE statement invokes the BCHOICE procedure.

Table 27.2 summarizes the options available in the PROC BCHOICE statement.

Table 27.2 PROC BCHOICE Statement Options

Option Description

Basic Options
DATA= Names the input data set
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations, excluding the burn-in iterations
NTHREADS= Specifies the number of threads for the computation
NTU= Specifies the number of tuning iterations for the random walk sampler
OUTPOST= Names the output data set to contain posterior samples of parameters
SEED= Specifies the random seed for simulation
THIN= Specifies the thinning rate

Sampling, Summary, Diagnostics, and Plotting options
ALGORITHM= Specifies the algorithm to use to sample the posterior distribution
DIAGNOSTICS= Controls the convergence diagnostics
DIC Computes the deviance information criterion (DIC)
HITPROB Outputs the average of estimated probabilities of chosen alternatives in the

input data
PLOTS= Controls plotting
STATISTICS= Controls posterior statistics

Other Options
ACCEPTTOL= Specifies the acceptance rate tolerance for the random walk sampler
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Table 27.2 (continued)

Option Description

INF= Specifies the machine numerical limit for infinity
LOGPOST Calculates the logarithm of the posterior density and likelihood
MAXTUNE= Specifies the maximum number of tuning loops for the random walk sampler
MINTUNE= Specifies the minimum number of tuning loops for the random walk sampler
NOCLPRINT Suppresses the “Class Level Information” table completely or partially
TARGACCEPT= Specifies the target acceptance rate for the random walk sampler

You can specify the following options.

ACCEPTTOL=n
specifies a tolerance for acceptance probabilities for the random walk sampler. By default, ACCEPT-
TOL=0.075. You can specify this option for logit models.

ALGORITHM=GAMERMAN | RWM | LATENT

ALG=GAMERMAN | RWM | LATENT
specifies the algorithm to use to sample the posterior distribution for the regression coefficients. You
can specify the following algorithms:

GAMERMAN
uses the Metropolis-Hastings approach of Gamerman (1997). This is the default for logit models.

RWM
uses the random walk Metropolis algorithm along with the normal proposal, as suggested in
Rossi, Allenby, and McCulloch (2005).

LATENT
uses the latent variables via the data augmentation method. This is the default for probit models.
This option is ignored for logit models.

When possible, PROC BCHOICE samples directly from the full conditional distribution. Otherwise,
the default sampling algorithm is the Gamerman algorithm for logit models and the latent variables via
the data augmentation method for probit models.

DATA=SAS-data-set
specifies the input data set.

DIAGNOSTICS=NONE | (keyword-list)

DIAG=NONE | (keyword-list)
specifies options for convergence diagnostics. By default, PROC BCHOICE computes the effective
sample sizes. The sample autocorrelations, Monte Carlo errors, Geweke test, Raftery-Lewis test, and
Heidelberger-Welch test are also available. For more information about convergence diagnostics, see
the section “Assessing Markov Chain Convergence” on page 141. You can request all the diagnostic
tests by specifying DIAGNOSTICS=ALL. You can suppress all the diagnostic tests by specifying
DIAGNOSTICS=NONE.

You can specify one or more of the following keyword-list options:
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ALL
computes all diagnostic tests and statistics. You can combine the option ALL with any other spe-
cific tests to modify test options. For example, DIAGNOSTICS=(ALL AUTOCORR(LAGS=(1
5 35))) computes all tests by using default settings and autocorrelations at lags 1, 5, and 35.

AUTOCORR < (autocorrelation-options) >

AC < (autocorrelation-options) >
computes default autocorrelations at lags 1, 5, 10, and 50 for each variable. You can choose other
lags by using the following autocorrelation-option:

LAGS=(numeric-list)
specifies autocorrelation lags. The numeric-list must take positive integer values.

ESS
computes the effective sample sizes (Kass et al. 1998) of the posterior samples of each parameter.
It also computes the correlation time and the efficiency of the chain for each parameter. Small
values of ESS might indicate a lack of convergence. For more information, see the section
“Effective Sample Size” on page 154.

GEWEKE < (Geweke-options) >
computes the Geweke spectral density diagnostics; this is a two-sample t-test between the first
f1 portion (as specified by the FRAC1= option) and the last f2 portion (as specified by the
FRAC2= option) of the chain. For more information, see the section “Geweke Diagnostics” on
page 148. By default, FRAC1=0.1 and FRAC2=0.5, but you can choose other fractions by using
the following Geweke-options:

FRAC1=value

F1=value
specifies the beginning proportion of the Markov chain. By default, FRAC1=0.1.

FRAC2=value

F2=value
specifies the end proportion of the Markov chain. By default, FRAC2=0.5.

HEIDELBERGER < (Heidel-options) >

HEIDEL < (Heidel-options) >
computes the Heidelberger-Welch diagnostic (which consists of a stationarity test and a half-width
test) for each variable. The stationary diagnostic test tests the null hypothesis that the posterior
samples are generated from a stationary process. If the stationarity test is passed, a half-width test
is then carried out. For more information, see the section “Heidelberger and Welch Diagnostics”
on page 150.

You can also specify suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as
follows:

EPS=value
specifies a small positive number � such that if the half-width is less than � times the sample
mean of the retaining iterations, the half-width test is passed. By default, EPS=0.1.
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HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the half-width test. By default, HALPHA=0.05.

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

MAXLAG=n
specifies the maximum number of autocorrelation lags to use to compute the effective sample
size; for more information, see the section “Effective Sample Size” on page 154. The value of
n is also used in the calculation of the Monte Carlo standard error; see the section “Standard
Error of the Mean Estimate” on page 155. By default, MAXLAG=MIN(500, MCsample/4),
where MCsample is the Markov chain sample size that is kept after thinning—that is, MCsample
D

h
NMC

NTHIN

i
. If n is too low, you might observe significant lags and the effective sample size

cannot be calculated accurately. A warning message appears in the SAS log, and you can increase
either the MAXLAG= option or the NMC= option, accordingly. Specifying this option implies
the ESS and MCSE options.

MCSE

MCERROR
computes the Monte Carlo standard error for the posterior samples of each parameter.

NONE
suppresses all the diagnostic tests and statistics. This option is not recommended.

RAFTERY < (Raftery-options) >

RL < (Raftery-options) >
computes the Raftery-Lewis diagnostic, which evaluates the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the chain is
allowed to run for a long time. The algorithm stops when the estimated probability OPQ D Pr.� �
O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q�R � OPQ � QCR/ D S.
For more information, see the section “Raftery and Lewis Diagnostics” on page 151.

You can specify Q, R, S, and a precision level � for a stationary test by specifying the following
Raftery-options—for example, DIAGNOSTICS=RAFTERY(QUANTILE=0.05):

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

EPS=value
specifies the tolerance level (a small positive number) for the stationary test. By default,
EPS=0.001.

PROB=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.
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QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, QUAN-
TILE=0.025.

DIC
computes the deviance information criterion (DIC). DIC is calculated by using the posterior mean
estimates of the parameters. For more information, see the section “Deviance Information Criterion
(DIC)” on page 157.

HITPROB

HITPROBABILITY
calculates the average of estimated probabilities of all chosen alternatives in the input data set. You can
use this average as a measure of goodness of fit.

INF=value
specifies the numerical definition of infinity in PROC BCHOICE. By default, INF=1E15. For example,
PROC BCHOICE considers 1E16 to be outside the support of the normal distribution and assigns
a missing value to the log density evaluation. The minimum value that is allowed is 1E10, and the
maximum value that is allowed is 1E27.

LOGPOST
calculates the logarithm of the posterior density of the parameters and the likelihood at each iteration.
As a result, the OUTPOST= data set will contain the LOGLIKE and LOGPOST variables. You can
specify this option for logit models and nested logit models, but not probit models.

MAXTUNE=n
specifies an upper limit for the number of proposal tuning loops for the random walk sampler. By
default, MAXTUNE=6. You can specify this option for logit models.

MINTUNE=n
specifies a lower limit for the number of proposal tuning loops for the random walk sampler. By
default, MINTUNE=2. You can specify this option for logit models.

NBI=n
specifies the number of burn-in iterations to perform before beginning to save parameter estimate
chains. By default, NBI=500. For more information, see the section “Burn-in, Thinning, and Markov
Chain Samples” on page 140.

NMC=n
specifies the number of iterations in the main simulation loop. This is the MCMC sample size if
THIN=1. By default, NMC=5000.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
number of levels is less than number . Specifying a number helps reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels.
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NTHREADS=n

NTHREAD=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option or if you specify
NTHREADS=0, the default number of threads is 1.

NTU=n
specifies the number of iterations to use in each proposal tuning phase for the random walk sampler.
By default, NTU=500. You can specify this option for logit models.

OUTPOST=SAS-data-set

OUT=SAS-data-set
specifies an output data set to contain the posterior samples of all parameters and the iteration numbers.
It contains the log of the posterior density (LOGPOST) and the log likelihood (LOGLIKE) if you
specify the LOGPOST option. By default, no OUTPOST= data set is created.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the display of diagnostic plots. You can request three types of plots: trace plots, autocorrelation
function plots, and kernel density plots. By default, the plots are displayed in panels unless you specify
the global-plot-option UNPACK. Also, when you specify more than one type of plot, the plots are
grouped by parameter unless you specify the global-plot-option GROUPBY=TYPE. When you specify
only one plot-request , you can omit the parentheses around it, as shown in the following example:

plots=none
plots(unpack)=trace
plots=(trace density)

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC BCHOICE
produces, for each parameter, a panel that contains the trace plot, the autocorrelation function plot, and
the density plot. This is equivalent to specifying PLOTS=(TRACE AUTOCORR DENSITY).

You can specify the following global-plot-options:

FRINGE
adds a fringe plot to the horizontal axis of the density plot.

GROUPBY=PARAMETER | TYPE

GROUP=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot. By default,
GROUPBY=PARAMETER. You can specify the following values:

TYPE
groups the plots by type.

PARAMETER
groups the plots by parameter.
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LAGS=n
specifies the number of autocorrelation lags that are used in plotting the ACF graph. By default,
LAGS=50.

SMOOTH
smooths the trace plot by using a fitted penalized B-spline curve (Eilers and Marx 1996).

UNPACKPANEL

UNPACK
unpacks all paneled plots, so that each plot in a panel is displayed separately.

You can specify the following plot-requests:

ALL
requests all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR

ACF
displays the autocorrelation function plots for the parameters.

DENSITY

D

KERNEL

K
displays the kernel density plots for the parameters.

NONE
suppresses the display of all plots.

TRACE

T
displays the trace plots for the parameters.

Consider a model that has four parameters, X1–X4. The following list shows which plots are produced
for various option settings:

• PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side, with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

• PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:
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Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

• PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

• PLOTS(UNPACK GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the separate trace
plots, followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)
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SEED=n
specifies the random number seed. By default, SEED=0, and PROC BCHOICE gets a random number
seed from the system clock. Negative seed values are treated as the default. The largest possible value
for the seed is 231 � 1. Analyses that use the same nonzero seed are reproducible. The seed value is
reported in the “Model Information” table.

STATISTICS< (global-stats-options) > = NONE | ALL |stats-request

STATS< (global-stats-options) > = NONE | ALL |stats-request
specifies options for posterior statistics. By default, PROC BCHOICE computes the posterior mean,
standard deviation, quantiles, and two 95% credible intervals: equal-tail and highest posterior density
(HPD). Other available statistics include the posterior correlation and covariance. For more information,
see the section “Summary Statistics” on page 155. You can request all the posterior statistics by
specifying STATS=ALL. You can suppress all the calculations by specifying STATS=NONE.

You can specify the following global-stats-options:

ALPHA=numeric-list
specifies the ˛ level for the equal-tail and HPD intervals. The value of ˛ must be between 0 and
0.5. By default, ALPHA=0.05.

PERCENT=numeric-list

PERCENTAGE=numeric-list
calculates the posterior percentages. The numeric-list contains values between 0 and 100. By
default, PERCENTAGE=(25 50 75).

You can specify the following stats-requests:

ALL
computes all posterior statistics. You can combine the ALL option with any other options. For
example, STATS(ALPHA=(0.02 0.05 0.1))=ALL computes all statistics by using the default
settings and intervals at ˛ levels of 0.02, 0.05, and 0.1.

BRIEF
computes the posterior means, standard deviations, and 100.1 � ˛/% HPD credible interval for
each variable. By default, ALPHA=0.05, but you can use the global ALPHA= option to request
other values. This is the default output for posterior statistics.

CORR
computes the posterior correlation matrix.

COV
computes the posterior covariance matrix.

INTERVAL

INT
computes the 100.1 � ˛/% equal-tail and HPD credible intervals for each variable. For more
information, see the sections “Equal-Tail Credible Interval” on page 156 and “Highest Posterior
Density (HPD) Interval” on page 156. By default, ALPHA=0.05, but you can use the global
ALPHA= option to request other intervals of any probabilities.
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NONE
suppresses all the statistics.

SUMMARY

SUM
computes the posterior means, standard deviations, and percentile points for each variable. By
default, the 25th, 50th, and 75th percentile points are produced, but you can use the global
PERCENT= option to request specific percentile points.

TARGACCEPT=value
specifies the target acceptance rate for the random walk–based Metropolis algorithm for logit models.
For more information, see the section “Metropolis and Metropolis-Hastings Algorithms” on page 136
in Chapter 7, “Introduction to Bayesian Analysis Procedures.” The numeric value must be between
0.01 and 0.99. By default, TARGACCEPT=0.45 for models with one parameter; TARGACCEPT=0.35
for models with two, three, or four parameters; and TARGACCEPT=0.234 for models with more than
four parameters (Roberts, Gelman, and Gilks 1997; Roberts and Rosenthal 2001).

THIN=n

NTHIN=n
controls the thinning rate of the simulation. PROC BCHOICE keeps every nth simulation sample and
discards the rest. All posterior statistics and diagnostics are calculated by using the thinned samples.
By default, THIN=1. For more information, see the section “Burn-in, Thinning, and Markov Chain
Samples” on page 140.

BY Statement
BY variables ;

You can specify a BY statement with PROC BCHOICE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the BCHOICE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC BCHOICE orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC BCHOICE interprets values of the ORDER= option.
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; the default is PARAM=REF. Design matrix columns are
created from CLASS variables according to the corresponding coding schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

MODEL Statement
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;

The MODEL statement is required; it defines the dependent variable and the fixed effects. The fixed-effects
determine the X matrix of the model. The specification of effects is the same as in the GLIMMIX and
MIXED procedures, where you do not specify random effects in the MODEL statement.

Table 27.3 summarizes the options available in the MODEL statement. These are subsequently discussed in
detail in alphabetical order by option category.

Table 27.3 MODEL Statement Options

Option Description

CHOICESET= Specifies the variables for defining a choice set
COEFFPRIOR= Specifies the prior of the regression coefficients
COVPRIOR= Specifies the prior of the covariance parameter for a probit model
COVTYPE= Specifies the structure of the covariance matrix of the error difference for a

probit model
INIT= Controls the generation of initial values of the regression coefficients
LAMBDAPRIOR= Specifies the prior of the log-sum coefficients for a nested logit model
NEST= Defines the nonoverlapping nests for a nested logit model
SAMELAMBDA Constrains the log-sum coefficients to be the same for all the nests in a

nested logit model
TYPE= Specifies the type of the model

CHOICESET=(variables)
specifies one or more variables for defining the choice sets. You must specify how the choice sets are
constructed, and you can use more than one variable. PROC BCHOICE does not sort by the values of
the choice set variable; rather, it considers the data to be from a new choice set whenever the value of
the choice set variable changes from the previous observation.

COEFFPRIOR=NORMAL < (options) >

CPRIOR=NORMAL < (options) >
specifies the prior distribution for the regression coefficients. The default is the normal prior N.0; 102I/,
where I is the identity matrix. You can specify the following options, enclosed in parentheses:

INPUT=SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal prior.
The data set must have a _TYPE_ variable to represent the type of each observation and a
variable for each regression coefficient. If the data set also contains a _NAME_ variable, the
values of this variable are used to identify the covariances for the _TYPE_=’COV’ observa-
tions; otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the
explanatory variables in the MODEL statement. PROC BCHOICE reads the mean vector from
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the observation for which _TYPE_=’MEAN’ and reads the covariance matrix from observations
for which _TYPE_=’COV’. For an independent normal prior, the variances can be specified with
_TYPE_=’VAR’; alternatively, the precisions (inverse of the variances) can be specified with
_TYPE_=’PRECISION’.

VAR< =c >
specifies the normal prior N.0; cI/, where I is the identity matrix and c is a scalar.

COVPRIOR=IWISHART< (options) >
specifies an inverse Wishart prior distribution, IWISHART(a,b), for the covariance matrix for the vector
of error differences. For models that do not have a covariance matrix for the error differences (the logit
and nested logit models), this option is ignored.

You can specify the following options, enclosed in parentheses:

DF=a
specifies the degrees of freedom of the inverse Wishart distribution. The default is the number
of alternatives in the choice set plus 2, which is equivalent to the dimension of the covariance
matrix of the error differences plus 3.

SCALE=b
specifies bI for the scale parameter of the inverse Wishart distribution, where I is the identity
matrix. The default is the number of alternatives in the choice set plus 2.

COVTYPE=UN | VC
specifies the covariance structure of the error difference vector for a probit model. Although a variety
of structures are available, most applications call for either COVTYPE=VC or COVTYPE=UN for
the error difference vector. The COVTYPE=VC (variance components) models a different variance
component for each error term. The TYPE=UN (unstructured) specifies a full structured covariance
matrix. The unstructured form accommodates any pattern of correlation in addition to fitting a different
variance component for each error difference term.

INIT=keyword-list | (numeric-list)

INITIAL=keyword-list | (numeric-list)
specifies options for generating the initial values for the coefficients parameters that are specified
as fixed-effects in the MODEL statement. By default, INIT=POSTMODE for logit models and
INIT=PRIORMODE for probit models. You can specify the following keywords:

LIST=numeric-list
assigns the numbers to be the initial values of the fixed effects in the corresponding list order.
The length of the list must be the same as the number of fixed effects. For example, the following
statement assigns the values 1, 2, and 3 to the first, second, and third coefficients in the model
and prints the table of initial values:

model y = x / choiceset=(ID Index) init=(list=(1 2 3) pinit);

If the length of the list is less than the number of fixed effects, the initial value of each remaining
parameter will be replaced by the corresponding default initial value. For example, the corre-
sponding mode of the posterior density is used for a logit model. If the length of the list is greater
than the number of fixed effects, the extra ones are ignored.
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PINIT
tabulates initial values for the fixed effects. (By default, PROC BCHOICE does not display the
initial values.)

POSTMODE
uses the mode of the posterior density as the initial value of the parameter, if you do not provide
one. If the mode does not exist or if it is on the boundary of the support of the density, the mean
value is used. If you specify POSTMODE for a probit model, where the posterior density is
difficult to obtain, PROC BCHOICE resets it to PRIORMODE.

PRIORMODE
uses the mode of the prior density as the initial value of the parameter.

LAMBDAPRIOR=SEMIFLAT< (options) >

LPRIOR=SEMIFLAT< (options) >
specifies a semi-flat prior distribution (Lahiri and Gao 2002) for the log-sum coefficient, �, for each
nest in a nested logit model. For models that are not nested logit, this option is ignored.

You can specify the following option, enclosed in parentheses:

PHI=a
specifies the parameter � of the semi-flat prior. By default, � D 0:8.

NEST=(numeric-list)
defines the nonoverlapping nests for a nested logit model. For a nested logit model, you must specify
the nests for all the alternatives in the choice set. Otherwise, the standard logit model is assumed. The
number of values in the list should match the number of alternatives in the choice sets, and each of the
actual values represents the nest that the particular alternative goes to. For example, NEST=(1 2 1 1 2)
arranges the first, third, and fourth alternatives in the first nest and the second and fifth alternatives in
the second nest. Currently, this option can accommodate only two-level nested logit models.

SAMELAMBDA
constrains the log-sum coefficients to be the same for all the nests in a nested logit model.

TYPE=keyword
specifies the type of the model. You can specify the following keywords:

LOGIT
specifies a standard logit model.

NLOGIT
specifies a nested logit model. If you do not also specify the NEST= option to define the nests,
this option is ignored, and a standard logit model is fit.

PROBIT
specifies a probit model.
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PREDDIST Statement
PREDDIST < 'label ' > OUTPRED=SAS-data-set < COVARIATES=SAS-data-set > ;

The PREDDIST statement creates a new SAS data set that contains random samples from the posterior
predictive distribution of the choice probabilities. The posterior predictive distribution is the distribution of
unobserved observations (prediction) conditional on the observed data. Let Y be the observed data, X be the
covariates, � be the parameter, and Ypred be the unobserved data. The posterior predictive distribution is
defined as follows:

p.YpredjY;X/ D
Z
p.Ypred;�jY;X/d�

D

Z
p.Ypredj�;Y;X/p.�jY;X/d�

Assuming that the observed and unobserved data are conditionally independent given � , the posterior
predictive distribution can be further simplified as follows:

p.YpredjY;X/ D
Z
p.Ypredj�/p.�jY;X/d�

The posterior predictive distribution is an integral of the likelihood function p.Ypredj�/ with respect to
the posterior distribution p.�jY/. The PREDDIST statement generates samples from a posterior predictive
distribution based on draws from the posterior distribution of � .

You can specify the following options:

COVARIATES=SAS-data-set
names the SAS data set to contain the sets of explanatory variable values for which the predictions are
established. This data set must contain data that has the same variables used in the model. If you omit
the COVARIATES= option, the DATA= data set that is specified in the PROC BCHOICE statement is
used instead.

NALTER=n

NALTERNATIVE=n
specifies the number of alternatives in a choice set in the COVARIATES= data set. All choice sets in
the data must have the same number of alternatives.

OUTPRED=SAS-data-set
creates an output data set to contain the samples from the posterior predictive distribution.

RANDOM Statement
RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects in the choice model. You can use this statement to
specify traditional variance component models and to specify random coefficients, which can be classification
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or continuous. You can specify only one RANDOM statement. Include the TYPE= option to define the
covariance structure. PROC BCHOICE does not include the intercept in the RANDOM statement.

Table 27.4 summarizes the options available in the RANDOM statement. All options are subsequently
discussed in alphabetical order.

Table 27.4 Summary of RANDOM Statement Options

Option Description

COVPRIOR= Specifies the prior distribution for the covariance of the random
effects

MONITOR Displays solutions of the random effects
NOOUTPOST Suppresses the output of the posterior samples of random effects to

the OUTPOST= data set
REMEAN Models the prior mean of the random effects
SUBJECT= Identifies the subjects in the model
TYPE= Specifies the covariance structure

You can specify the following options in the RANDOM statement after a slash (/).

COVPRIOR=IWISHART< (options) >
specifies an inverse Wishart prior distribution, IWISHART(a,b), for the covariance matrix of the random
effects.

You can specify the following options, enclosed in parentheses:

DF=a
specifies the degrees of freedom of the inverse Wishart distribution. The default is the dimension
of the covariance matrix of the random effects plus 3.

SCALE=b
specifies bI for the scale parameter of the inverse Wishart distribution, where I is the identity
matrix. The default is the dimension of the covariance matrix of the random effects plus 3.

MONITOR

MONITOR=(numeric-list)

MONITOR=RANDOM (number )
outputs results for the individual-level random-effects parameters. (By default, PROC BCHOICE
does not output results for individual-level random-effects parameters.) You can monitor a subset of
the random-effects parameters. You can provide a numeric list of the SUBJECT indexes, or PROC
BCHOICE can randomly choose a subset of all subjects for you.

To monitor a list of random-effects parameters for certain subjects, you can provide their indexes as
follows:

random x / subject=index monitor=(1 to 5 by 2 23 57);

PROC BCHOICE outputs results of random effects for subjects 1, 3, 5, 23, and 57. PROC BCHOICE
can also randomly choose a subset of all the subjects to monitor, if you submit a statement such as the
following:
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random x / subject=index monitor=(random(12));

PROC BCHOICE outputs results of random effects for 12 randomly selected subjects. You control the
sequence of the random indexes by specifying the SEED= option in the PROC BCHOICE statement.

When you specify the MONITOR option, it uses the specification of the STATISTICS= and PLOTS=
options in the PROC BCHOICE statement. By default, PROC BCHOICE outputs all the poste-
rior samples of all random-effects parameters to the OUTPOST= output data set. You can use the
NOOUTPOST option to suppress the saving of the random-effects parameters.

NOOUTPOST
suppresses the output of the posterior samples of random-effects parameters to the OUTPOST= data
set. In models that have a large number of random-effects parameters (for example, tens of thousands),
PROC BCHOICE can run faster if it does not save the posterior samples of the random-effects
parameters.

When you specify both the NOOUTPOST option and the MONITOR option, PROC BCHOICE outputs
the list of variables that are monitored.

The maximum number of variables that can be saved to an OUTPOST= data set is 32,767. If you
run a large-scale random-effects model in which the number of parameters exceeds this limit, the
NOOUTPOST option is invoked automatically and PROC BCHOICE does not save the random-effects
draws to the posterior output data set. You can use the MONITOR option to select a subset of the
parameters to store in the OUTPOST= data set.

REMEAN
models the mean of the random effects, so that N
 is estimated. You can also model the prior mean of
the random effects as a function of individual demographic variables. Rossi, McCulloch, and Allenby
(1996) and Rossi, Allenby, and McCulloch (2005) propose adding another layer of flexibility to the
random-effects-only model by allowing heterogeneity that is driven by observable (demographic)
characteristics of the individuals. The following REMEAN=(AGE GENDER) option in the RANDOM
statement estimates the mean of the random effect, X, and models the mean as a function of Age and
Gender:

random X / subject=Index remean=(Age Gender);

SUBJECT=effect

SUB=effect
identifies the subjects in the model. PROC BCHOICE assumes complete independence across subjects;
thus, for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure that has
identical blocks. Specifying a subject effect is equivalent to nesting all other effects in the RANDOM
statement within the subject effect.

The effect can be continuous variables. PROC BCHOICE does not sort by the values of the continuous
variable; rather, it considers the data to be from a new subject or group whenever the value of the
continuous variable changes from the previous observation.
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TYPE=UN | VC
specifies the covariance structure. Although a variety of structures are available, most applications
call for either TYPE=VC or TYPE=UN. The TYPE=VC (variance components) option, which is the
default structure, models a different variance component for each random effect. The TYPE=UN
(unstructured) specifies a full structured covariance matrix for the random effects. The unstructured
form accommodates any pattern of correlation between the random effects in addition to fitting a
different variance component for each random effect.

Details: BCHOICE Procedure

Discrete Choice Models
Discrete choice models are used in marketing research to model decision makers’ choices among alternative
products and services. The decision makers might be people, households, companies and so on, and the
alternatives might be products, services, actions, or any other options or items about which choices must be
made (Train 2009). The collection of alternatives that are available to the decision makers is called a choice
set.

Discrete choice models are derived under the assumption of utility-maximizing behavior by the decision
maker. When individuals are asked to make one choice among a set of alternatives, they usually determine
the level of utility that each alternative offers. The utility that individual i obtains from alternative j among J
alternatives is denoted as

uij D vij C �ij ; i D 1; : : : ; N; and j D 1; : : : ; J

where the subscript i is an index for the individuals, the subscript j is an index for the alternatives in a choice
set, vij is a nonstochastic utility function that relates those observed factors to the utility, and �ij is the error
component that captures the unobserved characteristics of the utility. In discrete choice models, the observed
part of the utility function is assumed to be linear in the parameters,

vij D x0ijˇ

where xij is a p-dimensional design vector of observed attribute levels that relate to alternative j and ˇ is the
corresponding vector of fixed regression coefficients that indicate the utilities or part-worths of the attribute
levels.

Decision makers choose the alternative that gives them the greatest utility. Let yi be the multinomial response
vector for the ith individual. The value yij takes 1 if the jth component of ui D .ui1; : : : ; uiJ / is the largest,
and 0 otherwise:

uij D x0ijˇ C �ij

yij D

�
1 if uij � max.ui /
0 otherwise
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The probability that the individual i chooses alternative j is

P.yij D 1/ D Pr .uij > uik for all k ¤ j /

D Pr .vij C �ij > vik C �ik for all k ¤ j /

D Pr .�ik � �ij < vij � vik for all k ¤ j /

D

Z
�

I.�ik � �ij < vij � vik for all k ¤ j /f .�i /d�i

where I(.) is the indicator function and f .�i / denotes the joint density of the error vector �i D .�i1; : : : ; �iJ /.
Different specifications about the density result in different types of choice models, as detailed in the next
section. Logit and nested logit models have a closed form for this integral, whereas a probit model does not.

Types of Choice Models

Logit

In the multinomial logit (MNL) model, each �ij .j D 1; : : : ; J / is independently and identically distributed
(iid) with the Type I extreme-value distribution, exp.� exp.��ij //, which is also known as the Gumbel
distribution. The essential part of the model is that the unobserved parts of utility are uncorrelated among all
alternatives, in addition to having the same variance. This assumption provides a convenient form for the
choice probability (McFadden 1974):

P.yij D 1/ D
exp.x0ijˇ/PJ
kD1 exp.x0

ik
ˇ/
; i D 1; : : : ; N and j D 1; : : : ; J

The MNL likelihood is formed by the product of the N independent multinomial distributions:

p.Yjˇ/ D
NY
iD1

JY
jD1

P.yij D 1/
yij

The MNL model is by far the easiest and most widely used discrete choice model. It is popular because
the formula for the choice probability has a closed form and is readily interpretable. In his Nobel lecture,
McFadden (2001) tells a history of the development of this path-breaking model.

Bayesian analysis for the MNL model requires the specification of a prior over the coefficient parameters
ˇ and computation of the posterior density. It is convenient to use a normal prior on ˇ, �.ˇ/ D N. Ň;�ˇ/.
When the investigator has no strong prior beliefs about the location of the parameters, it is recommended that
diffuse, but proper, priors be used.

The posterior density of the parameter ˇ is

p.ˇjY/ / p.Yjˇ/�.ˇ/

Because discrete choice logit models fall under the framework of a generalized linear model (GLM) with
a logit link, you can use Metropolis-Hastings sampling with the Gamerman approach for the sampling
procedure. This approach extends the usual iterative weighted least squares method to include a sampling step
based on the Metropolis-Hastings algorithm for GLMs. For more information about the Gamerman approach,
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see the section “Gamerman Algorithm” on page 1046. You can also incorporate this methodology for a
hierarchical structure that has random effects. For more information, see the section “Logit with Random
Effects” on page 1041. The Gamerman approach is the default sampling method when a direct sampling that
uses a closed-form posterior distribution cannot be attained. The random walk Metropolis is also available
when you specify ALGORITHM=RWM in the PROC BCHOICE statement.

The iid assumption about the error terms of the utilities of the different alternatives imposes the independence
from irrelevant alternatives (IIA) property, which implies proportional substitution across alternatives.
Sometimes this property might seem restrictive or unrealistic, prompting the need for more flexible models to
overcome it.

Nested Logit

You derive the nested logit model by allowing the error components to be identical but nonindependent.
Instead of being independent Type I extreme-value errors, the errors are assumed to have a generalized
extreme-value (GEV) distribution. This model generalizes the standard logit model to allow for particular
patterns of correlation in unobserved utility (McFadden 1978).

In a nested logit model, all the alternatives in a choice set can be partitioned into nests in such a way that the
following conditions are true:

• The probability ratio of any two alternatives that are in the same nest is independent of the existence of
all other alternatives. Hence, the IIA assumption holds within each nest.

• The probability ratio of any two alternatives that are in different nests is not independent of the
existence of other alternatives in the two nests. Hence, the IIA assumption does not hold between
different nests.

A nested logit example from Train (2009) best explains how a nested logit model works. Suppose the
alternatives for commuting to work are driving an auto alone, carpooling, taking the bus, and taking the train.
If you remove any alternative, the probabilities of the other alternatives increase. But by what percentage
would each probability increase? Suppose the changes in probabilities occur as shown in Table 27.5.

Table 27.5 Example of IIA Holding within Nests of Alternatives

Probabilities with One Alternative Removed
Alternative Original Prob. Auto Alone Carpool Bus Train
Auto alone 0.40 – 0.45(+12.5%) 0.52(+30.0%) 0.48(+20.0%)
Carpool 0.10 0.20(+100%) – 0.13(+30.0%) 0.12(+20.0%)
Bus 0.30 0.48(+60.0%) 0.33(+10.0%) – 0.40(+33.0%)
Train 0.20 0.32(+60.0%) 0.22(+10.0%) 0.35(+70.0%) –

In Table 27.5, the probabilities for bus and train increase by the same proportion whenever you remove one
of the other alternatives. Therefore, IIA is valid between bus and train, so they can be placed in the same nest
called “transit.” Similarly, auto alone and carpool are placed in one nest called “auto.” IIA does not hold
between these two nests.

A convenient way to represent the model and substitution patterns is to draw a tree diagram, where each
branch denotes a subset of alternatives within which IIA holds and where each leaf on each branch denotes
an alternative. The tree diagram for the commuting-to-work example is shown in Figure 27.10.
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Figure 27.10 Two-Level Decision Tree

Although decision trees in nested logit analyses, such as the one shown in Figure 27.10, are often interpreted
as implying that the higher-level decisions are made first, followed by decisions at lower levels, no such
temporal ordering is necessarily required. A good way to think about nested logit models is that they are
appropriate when there are groups of alternatives that are similar to each other in unobserved ways. In other
words, nested logit models are appropriate when there is correlation between the alternatives in each nest
but no correlation between the alternatives in different nests. Currently, PROC BCHOICE considers only
two-level nested logit models.

In mathematical notation, let the set of alternatives be partitioned into K nonoverlapping subsets (nests)
that are denoted by S1; S2; : : : ; SK . The nested logit model is derived by assuming that the vector of the
unobserved part of the utility, �i D .�i1; : : : ; �iJ /, has a cumulative distribution

exp.�
KX
kD1

.
X
j2Sk

exp.��ij =�k//�k /

This is a type of generalized extreme value (GEV) distribution. For a standard logit model, each �ij is iid
with an extreme-value distribution, whereas for a nested logit model, the marginal distribution of �ij is an
extreme-value distribution. The �ij are correlated within nests. If alternatives j and m belong to the same
nest, then �ij is correlated with �im. But if any two alternatives are in different nests, their unobserved part of
utility is still independent. The parameter �k measures the degree of independence among alternatives in
nest k. The higher the value of �k is, the less correlation there is. However, the correlation is actually more
complicated than the parameter �k . The equation �k D 1 represents no correlation in nest k. If �k D 1 for
all nests, the nested logit model reduces to the standard logit model.

The choice probability for alternative j 2 Sk has a closed form:

P.yij D 1/ D
exp.x0ijˇ=�k/.

P
m2Sk

exp.x0imˇ=�k//
�k�1PK

lD1.
P
m2Sl

exp.x0imˇ=�l//�l

From this form, the nested logit likelihood is derived as the product of the N multinomial distributions:

p.Yjˇ;�/ D
NY
iD1

JY
jD1

P.yij D 1/
yij

A prior for � D .�1; : : : ; �K/ is needed in addition to a prior for the coefficient parameters ˇ. The �k in nest
k is often called the log-sum coefficient. The value of �k must be positive for the model to be consistent with
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utility-maximizing behavior. If �k 2 Œ0; 1� for all k, the model is consistent with utility maximization for
all possible values of the explanatory covariates, whereas the model is consistent only for some range of the
covariates but not for all values if �k > 1. Kling and Herriges (1995) and Herriges and Kling (1996) suggest
tests of consistency of nested logit with utility maximization when �k > 1. Train, McFadden, and Ben-Akiva
(1987) show an example of models for which �k > 1. A negative value of �k should be avoided because the
model will be inconsistent and imply that consumers are choosing the alternative to minimize their utilities.

For the nested logit model, noninformative priors are not ideal for �. Flat priors on different versions of the
parameter space can yield different posterior distributions.

Lahiri and Gao (2002) suggest the following semi-flat priors by using the parameter � for each �:

�.�/ D

8<:
0 if � � 0
� if 0 < � < 1
� expŒ �

1��
.1 � �/� if � � 1

PROC BCHOICE uses this prior with a default value of 0.8 for �. You can specify other values for �. Sims’
priors are also attractive with various s values as follows:

�.�/ D

�
0 if � � 0
s�s�1 exp.��s/ if � > 0

In addition, a gamma or beta distribution is a good choice for the prior of �. However, PROC BCHOICE
supports only semi-flat priors in this release.

When the priors for the parameters .ˇ;�/ are specified, the posterior density is as follows:

p.ˇ;�jY/ / p.Yjˇ;�/�.ˇ/�.�/

Another generalization of the conditional logit model, the heteroscedastic extreme-value (HEV) model, is
obtained by allowing independent but nonidentical errors that are distributed with a Type I extreme-value
distribution (Bhat 1995). The HEV model permits different variances on the error components of utility
across the alternatives. Currently, PROC BCHOICE does not consider this type of model.

Probit

The multinomial probit (MNP) model is derived when the errors, �0i D .�i1; �i2; : : : ; �iJ /, have a multivariate
normal (MVN) distribution with a mean vector of 0 and a covariance matrix †.

uij D x0ijˇ C �ij ; �i � N.0;†/; i D 1; : : : ; N and j D 1; : : : ; J

yij D

�
1 if uij � max.ui /
0 otherwise

where † is the J � J covariance matrix of the error vector. For a full covariance matrix, any pattern of
correlation and heteroscedasticity can be accommodated. Thus, this model fits a very general error structure.

However, the choice probability, from which the likelihood is derived, does not have a closed form. McCulloch
and Rossi (1994) propose an algorithm that is a multivariate version of the probit regression algorithm of
Albert and Chib (1993) and construct a Gibbs sampler that is based on a Markov chain to draw directly from
the exact posteriors of the MNP model. This approach avoids direct evaluation of the likelihood. Hence,
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it avoids problems that are associated with calculating choice probabilities that affect both the standard
likelihood and the method of simulated moments approaches.

To avoid the parameter identification problems, a usual practice is to take differences against one partic-
ular alternative, because only differences in utility matter. Suppose you take differences against the last
alternative in the choice set and you define wij D uij � uiJ ; Qxij D xij � xiJ , Q�ij D �ij � �iJ , and
Q�0i D .Q�i1; Q�i2; : : : ; Q�iJ�1/.

wij D Qx0ijˇ C Q�ij ; Q�i � N.0; Q†/; i D 1; : : : ; N and j D 1; : : : ; J � 1

yij D

�
1 if wij � max.0;wi;�j /
0 otherwise

where Q† is the .J � 1/ � .J � 1/ covariance matrix of the vector of error differences, Q�i , and wi;�j D
.wi1; : : : ; wi.j�1/; wi.jC1/; : : : ; wi.J�1//. The dimension has been reduced to J � 1. McCulloch and Rossi
(1994) call wij the latent variable. The introduction of the latent variables in what is known as the data
augmentation step makes the application of a Gibbs sampler feasible.

A normal prior is used for ˇ and an inverse Wishart prior on Q†:

�.ˇ/ D N. Ň;�ˇ/

�. Q†/ D inverse Wishart.�;V/

Then sampling is carried out consecutively from the following three groups of conditional posterior distribu-
tions:

.1/ .wij jwi;�j ;ˇ; Q†;Y/; i D 1; : : : ; N and j D 1; : : : ; J � 1

.2/ .ˇjW; Q†;Y/

.3/ . Q†jW;ˇ;Y/

where W is obtained by stacking all wi . All three groups of conditional distributions have closed forms that
are easily drawn from. Conditional (1) is truncated normals, (2) is a regular normal, and (3) is an inverse
Wishart distribution. This sampling avoids the tuning stage that is required by most Metropolis-Hastings
algorithms, and its analytically tractable complete data likelihood also makes it easy to embed probit models
into more elaborate hierarchical structures, such as random-effects models. For more information, see
McCulloch and Rossi (1994).

Originally, the multinomial probit model required burdensome computation compared to a family of multino-
mial choice models that are derived from the Gumbel distributed utility function, because the computation
involves multidimensional integration (with dimension J � 1) in the estimation process. In addition, the
multinomial probit model requires more parameters than other multinomial choice models. However, it fully
relaxes the restrictive IIA assumption that is imposed in logit models and allows any pattern of substitution
among alternatives. Because of the breakthrough Bayesian methods that Albert and Chib (1993) and McCul-
loch and Rossi (1994) introduced, the probit model can be estimated without the need to compute the choice
probabilities. This advantage has greatly increased the popularity of the probit model.
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Random Effects
Choice models that have random effects (or random coefficients) provide solutions to create individual-level
or group-specific utilities. They are also referred as “mixed models” or “hybrid models.” One of the greatest
challenges in marketing research is to acknowledge the diversity of preferences and sensitivities in the
marketplace. Heterogeneity in individual preferences is the reason for differentiated product programs and
market segmentation. As individual preferences become more diverse, it becomes less appropriate to consider
the analyses in an aggregated way. Individual utilities are useful because they make segmentation easy and
provide a way to detect groups. Because people have different preferences, it can be misleading to roll the
whole sample together into a single set of utilities.

For example, imagine studying the popularity of a new brand. Some participants in the study who are
interviewed love the new brand, whereas others dislike it. If you simply aggregate the data and look at the
average, the conclusion is that the sample is ambivalent toward the new brand. This would be the least helpful
conclusion that could be drawn, because it does not fit for anyone.

Choice models that have random effects generalize the standard choice models to incorporate individual-level
effects. Let the utility that individual i obtains from alternative j in choice situation t (t D 1; : : : ; T ) be

uijt D x0ijtˇ C z0ijt
i C �ijt

yijt D

�
1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /
0 otherwise

where yijt is the observed choice for individual i and alternative j in choice situation t; xijt is the fixed design
vector for individual i and alternative j in choice situation t; ˇ is the vector of fixed coefficients; zijt is the
random design vector for individual i and alternative j in choice situation t; and 
i is the vector of random
coefficients for individual i that correspond to zijt . Sometimes the random coefficients might be at a level
different from the individual level. For example, it is common to assume that there are random coefficients
at the household level or group level of participants. For the convenience of notation, random effects are
assumed to be at the individual level.

In the random-effects model, it is assumed that each 
i is drawn from a superpopulation and this superpop-
ulation is normal, 
i � iid N.0;�
/. An additional stage is added to the model where a prior for �
 is
specified:

�.
i / D N.0;�
/

�.�
/ D inverse Wishart.�0;V0/

The covariance matrix�
 characterizes the extent of unobserved heterogeneity among individuals. Large
diagonal elements of�
 indicate substantial heterogeneity in part-worths. Off-diagonal elements indicate
patterns in the evaluation of attribute levels. For example, positive covariances specify pairs of attribute levels
that tend to be evaluated similarly across respondents. Product offerings that consist of these attribute levels
are more strongly preferred or disliked by certain individuals.

In this setup, the prior mean is 0 for the random effects, meaning that the random effects either are truly
around 0 or have been centered by the fixed effects. For random effects whose mean is not around 0, you
can follow the usual practice of specifying them in the fixed effects. For example, if one random effect is
price and you do not think that the population mean of price is around 0, then you should add price as a fixed
effect as follows:
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proc bchoice data=randeffdata;
class subj set;
model y = price / choiceset=(subj set);
random price / subject=subj;

run;

Thus, you obtain the estimate for the population mean of the price effect through the fixed effect, and you
obtain the deviation from the population mean for each individual through random effects.

Allenby and Rossi (1999) and Rossi, Allenby, and McCulloch (2005) propose a hierarchical Bayesian
random-effects model that is set up in a different way. In their model, there are no fixed effects but only
random effects. This model, which is referred to as the random-effects-only model in the rest of this chapter,
is as follows:

uijt D z0ijt
i C �ijt

yijt D

�
1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /
0 otherwise

�.
i / D N. N
;�
/

�.�
/ D inverse Wishart.�0;V0/

where N
 is a mean vector of regression coefficients, which models the central location of distribution of the
random coefficients; N
 represents the average part-worths across the respondents in the data. If you want to
use this setup, specify the REMEAN option in the RANDOM statement to request estimation on N
 and do
not specify any fixed effects in the MODEL statement.

Rossi, McCulloch, and Allenby (1996) and Rossi, Allenby, and McCulloch (2005) add another layer
of flexibility to the random-effects-only model by allowing heterogeneity that is driven by observable
(demographic) characteristics of the individuals. They model the prior mean of the random coefficients as a
function of the individual’s demographic variables (such as age and gender),

�.
i / D N.�di ;�
/

�.�
/ D inverse Wishart.�0;V0/

where di is a vector that consists of an intercept and some observable demographic variables. � is a matrix
of regression coefficients, which affects the location of distribution of the random coefficients. � should
be useful for identifying respondents who have part-worths that are different from those in the rest of the
sample if some individual-level characteristics are included in di . This specification allows the preferences
or intercepts to vary by both demographic variables and the slopes. If di consists of only an intercept, this
model reduces to the previous one. For more information about how to sample � , see Rossi, McCulloch, and
Allenby (1996), Rossi, Allenby, and McCulloch (2005) (Section 2.12 in Chapter 2), and Rossi (2012).

Logit with Random Effects

The logit model with random effects consists of the fixed-coefficients parameters ˇ, the random-coefficients
parameters 
i , and the covariance parameters for the random coefficients�
 . You can use the Metropolis-
Hastings sampling with Gamerman approach to draw samples through the following three conditional
posterior distributions:

.1/ .ˇj
i ;Y/

.2/ .
i jˇ;�
 ;Y/ i D 1; : : : ; N

.3/ .�
 j
i ;Y/
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All chains are initialized with random effects that are set to 0 and a covariance matrix that is set to an identity
matrix. Updating is done first for the fixed effects, ˇ, as a block to position the chain in the correct region of
the parameter space. Then the random effects are updated, and finally the covariance of the random effects is
updated. For more information, see Gamerman (1997) and the section “Gamerman Algorithm” on page 1046.

The hierarchical Bayesian random-effects-only model as proposed in Allenby and Rossi (1999) and Rossi,
Allenby, and McCulloch (2005) contains the random-coefficients parameters 
i , the population mean of
the random-coefficients parameters N
 , and the covariance parameters for the random coefficients�
 . The
sampling can be carried out by the following conditional posteriors:

.1/ .
i j N
;�
 ;Y/ i D 1; : : : ; N

.2/ . N
j
i ;�
/

.3/ .�
 j
i ; N
/

The second and third conditional posteriors are easy to draw because they have direct sampling distributions:
the second has a normal distribution with a mean of

PN
iD1 
i=N and a covariance of �
=N ; the third is

an inverse Wishart.�0 CN;V0 C S/, where S D
PN
iD1.
i � N
/.
i � N
/

0=N . There is no closed form for
the first conditional posterior. The Metropolis-Hastings sampling with Gamerman approach is the default
sampling algorithm for it.

You can also use random walk Metropolis sampling when direct sampling is not an option, such as for the fixed-
coefficients parameters ˇ and random-coefficients parameters 
i . You can specify ALGORITHM=RWM to
choose random walk Metropolis sampling. For the random-coefficients parameters 
i , Rossi, McCulloch,
and Allenby (1996) and Rossi, Allenby, and McCulloch (2005) suggest random walk Metropolis sampling
in which increments have covariance s2�t
 , where s is a scaling constant whose value is usually set at

2:93p
dim.
i /

and�t
 is the current draw of�
 .

The sampling for the random-effects-only setup is often faster, because the first conditional posterior for each
i involves only the data for individual i and because the second and third conditional posteriors depend not on
the data directly but only on the draws of 
i .

Probit with Random Effects

The probit model with random effects has the following parameters: the fixed-coefficients parameters ˇ, the
covariance parameters for the error differences Q†, the random-coefficients parameters 
i , and the covariance
parameters for the random coefficients �
 . It has extra parameters .
i ;�
/ in addition to .ˇ; Q†/ in a
fixed-effects-only model. You can conveniently adapt the Gibbs sampler proposed in McCulloch and Rossi
(1994) to handle the model by appending the new parameters to the set of parameters that would be drawn
for a probit model without random coefficients. The sampling can be carried out by the following conditional
posteriors:

.1/ .wij jwi;�j ;ˇ; Q†;
i ;Y/ i D 1; : : : ; N and j D 1; : : : ; J � 1

.2/ .ˇjW; Q†;
i ;Y/

.3/ .
i jW;ˇ; Q†;�
 ;Y/ i D 1; : : : ; N

.4/ . Q†jW;ˇ;Y/

.5/ .�
 jW;ˇ; Q†;
i ;Y/
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All the groups of conditional distributions have closed forms that are easily drawn from. Conditional (1)
is truncated normal, (2) and (3) are normal, and (4) and (5) are inverse Wishart distribution. For more
information, see McCulloch and Rossi (1994).

Identification and Specification
Two aspects of identification in choice models play an important role in model specification: location shift
and scale shift. For more detailed information, see Chapter 2 in Train (2009).

Location Shift

Decision makers choose the alternative that gives them the greatest utility. If a constant is added to the
utilities of all alternatives, the location of the utilities will change, but the decision maker will choose the
same alternative.

The probability that the individual i chooses alternative j is

P.yij D 1/ D Pr .uij > uik for all k ¤ j /

D Pr .uij � uik > 0 for all k ¤ j /

Only the difference in utilities matters, not the absolute values (Train 2009). This explains why there is no
overall intercept term in a choice model.

Alternative-Specific Main Effects
People often want to observe the main effect that is related to each of the alternatives. For example,

uij D ˛j C x0ijˇ C �ij for all j

where ˛j is the main effect that is related to alternative j, xij is the design variable vector that is specific to
alternative j, and ˇ are the corresponding coefficients of xij . The main effect ˛j implies the average effect
for alternative j on utility of all factors that are not included in the model.

Consider a person who can take either a car or a bus to work. The form of utilities for taking a car or bus can
be specified as follows:

ucar D ˛1car C x0carˇ C �car
ubus D ˛1bus C x0busˇ C �bus

The preceding form is equivalent to the form

ucar D ˛2car C x0carˇ C �car
ubus D ˛2bus C x0busˇ C �bus

as long as ˛1car � ˛
1
bus D ˛

2
car � ˛

2
bus. There are infinitely many values that will result in the same choice

probabilities. The two main effects are not estimable.
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To avoid this problem, you must normalize one of the main effects to 0. If you set ˛car to 0, then ˛bus
is interpreted as the average effect on the utility of bus relative to car. PROC BCHOICE automatically
normalizes for you by setting one of the main effects to 0 if you specify the alternative specific main effects
in the CLASS statement. If you want to designate which alternative to set to 0, use the REF= option in the
CLASS statement.

Individual-Specific Effects
Attributes of the alternatives vary, so they are also called alternative-specific effects. However, demographic
variables, such as age, gender, and race, do not change among alternatives for an individual. These are
individual-specific effects. They can enter the model only if they are specified in ways that create differences
in utilities among alternatives.

Suppose you want to examine the effect of an individual’s age on choosing car or bus:

ucar D x0carˇ C �carAgeC �car
ubus D ˛bus C x0busˇ C �busAgeC �bus

Because only differences in utility matter, you cannot estimate both �car and �bus. You need to set one of
them to 0. You can do this by interacting Age with the alternative-specific main effects, one of which has
been normalized to 0:

ucar D x0carˇ C �car
ubus D ˛bus C x0busˇ C �busAgeC �bus

where �bus is interpreted as the differential effect of age on the utility of bus versus car.

You need to make sure that individual-specific effects have interacted with some alternative-specific effects,
so that there is no identification problem. PROC BCHOICE checks whether there is any variable that does
not change among alternatives; it issues a warning message if any such variable is found.

Scale Shift

The scale of utility is also irrelevant for choice models. The alternative that has the largest utility is the largest,
regardless of how the utilities are scaled. Multiplying the utilities by a constant does not change the choice
probabilities.

Scale Normalization for Logit Models
Consider the utility function

u1ij D x0ijˇ C �
1
ij for all j

where Var.�1ij / D 1. There is another utility function

u2ij D x0ij .ˇ � �/C �
2
ij for all j

where Var.�2ij / D �
2. These two utility functions are equivalent. The coefficients .ˇ � �/ reflect the effect of

the observed variables relative to the standard deviation of the unobserved factors (Train 2009).

In both standard and nested logit models, the error variance is equal to �2=6, which is around 1.6. So the
coefficients are larger by a factor of

p
1:6 than the coefficients of a model that has an error variance of 1.
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Scale Normalization for Probit Models
Parameters in logit models are automatically normalized because of the specific variance assumption on the
error term. In probit models, the covariance matrix of the error is estimated together with the ˇ coefficients;
therefore, the normalization is not done automatically. The researcher has to be careful in interpreting the
results.

For notational convenience, use a four-alternative model. The error vector is �0 D .�1; �2; �3; �4/, which is
assumed to have a normal distribution with 0 mean and a covariance matrix

† D

0BB@
�11 �12 �13 �14
: �22 �23 �24
: : �33 �34
: : : �44

1CCA
where the dots refer to the corresponding elements in the upper part of the symmetric matrix. There are
J(J+1)/2 elements in the covariance matrix, but not all of them are estimable, because only the difference in
the utilities matters.

A typical way of normalizing the covariance matrix is to reduce it by differencing the utilities with respect to
the last alternative; some prefer the first alternative (Train 2009). You can choose which alternative to subtract
by rearranging the data in the right order. Define the error differences as .Q�14; Q�24; Q�34/; the subscripts mean
that the error difference is taken against the fourth one. The covariance matrix for the transformed new vector
of error differences is of the form

Q† D

0@ Q�11 Q�12 Q�13
: Q�22 Q�23
: : Q�33

1A
where

Q�11 D �11 C �44 � 2�14

Q�22 D �22 C �44 � 2�24

Q�33 D �33 C �44 � 2�34

Q�12 D �12 C �44 � �14 � �24

Q�13 D �13 C �44 � �14 � �34

Q�23 D �23 C �44 � �24 � �34

Furthermore, the top left entry on the diagonal is set to 1:

QQ† D

0@1 Q�12= Q�11 Q�13= Q�11
: Q�22= Q�11 Q�23= Q�11
: : Q�33= Q�11

1A
PROC BCHOICE outputs estimates of QQ†.

In the multinomial logit (MNL) model, each �ij is independently and identically distributed (iid) with the
Type I extreme-value distribution, and the covariance matrix is �2=6I . The normalized covariance matrix of
the vector of error differences would be0@1 0:5 :5

: 1 :5

: : 1

1A
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This provides a method of model selection: you might want to fit a probit model first, check the normalized
covariance matrix estimation to see how close it is to the preceding matrix, and then decide whether a simpler
logit model would be appropriate.

Gamerman Algorithm
Discrete choice logit models fall in the framework of a generalized linear model (GLM) with a logit link.
The Metropolis-Hastings sampling approach of Gamerman (1997) is well suited to this type of model.

In the GLM setting, the data are assumed to be independent with exponential family density

f .yi j�i / D exp Œ.yi�i � b.�i //=�i �c.yi ; �i /

The means that �i D E.yi j�i / are related to the canonical parameters �i via �i D b0.�i / and to the
regression coefficients via the link function

g.�i / D �i D Xiˇ

The maximum likelihood (ML) estimator in a GLM and the asymptotic variance are obtained by iterative
application of weighted least squares (IWLS) to transformed observations. Following McCullagh and Nelder
(1989), define the transformed response as

Qyi .ˇ/ D �i C .yi � �i /g0.�i /

and define the corresponding weights as

W�1i .ˇ/ D b00.�i /Œg
0.�i /�

2

Suppose a normal prior is specified on ˇ, �.ˇ/ D N. Ň;�ˇ/. The posterior density is as follows:

p.ˇjY/ / p.Yjˇ/�.ˇ/

/ exp f
NX
iD1

yi�i � b.�i /
�i

�
1

2
.ˇ � Ň/0��1ˇ .ˇ � Ň/g

Gamerman (1997) proposes that Metropolis-Hastings sampling be combined with iterative weighted least
squares as follows:

1. Start with ˇ.0/ and t D 1.

2. Sample ˇ� from the proposal density N.m.t/;C.t//, where

m.t/
D f��1ˇ CX0W.ˇ.t�1//Xg�1f��1ˇ

Ň CX0W.ˇ.t�1// QY.ˇ.t�1//g

C.t/ D f��1ˇ CX0W.ˇ.t�1//Xg�1
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3. Accept ˇ� with probability

˛.ˇ.t�1/;ˇ
�/ D minŒ1;

p.ˇ�jY/q.ˇ�;ˇ.t�1//
p.ˇ.t�1/jY/q.ˇ.t�1/;ˇ�/

�

where p.ˇjY/ is the posterior density and q.ˇ�;ˇ.t�1// and q.ˇ.t�1/;ˇ�/ are the transitional prob-
abilities that are based on the proposal density N.m.:/;C.://. More specifically, q.ˇ�;ˇ.t�1// is an
N.m�;C�/ density that is evaluated at ˇ.t�1/, whereas m� and C� have the same expression as m.t/

and C.t/ but depend on ˇ� instead of ˇ.t�1/. If ˇ� is not accepted, the chain stays with ˇ.t�1/.

4. Set t D t C 1 and return to step 1.

You can extend this methodology to logit models that have random effects. If there are random effects, the
link function is extended to

g.�i / D �i D Xiˇ C Zi
i

where the random effects are assumed to have a normal distribution, �.
i / D N.0;�
/, and �.�
/ D

inverse Wishart.�0;V0/. The posterior density is

p.ˇ;
1; : : : ;
N ;�
 jY/ / p.Yjˇ;
1; : : : ;
N ;�
/�.ˇ/

NY
iD1

�.
i /�.�
/

The parameters are divided into blocks, ˇ;
1; : : : ;
N , and�
 . For the fixed-effects ˇ block, the conditional
posterior has the same form, but the link changes to include Zi
i ; i D 1; : : : ; N , which are taken as known
constants (offsets) at each iteration. The only change that is needed is to replace the transformed response
Qyi .ˇ.t�1// with Qyi .ˇ.t�1// � Zi
i in step 2 of the previous Gamerman procedure.

For the random-effects 
i block, the same Metropolis-Hastings sampling with the least square proposal can
apply. The conditional posterior is

p.
i jY;ˇ;�
/ / exp f
yi�i � b.�i /

�i
�
1

2

 0i�

�1

 
ig

The transformed response is now Qyi .

.t�1/
i /, and the proposal density is N.m.t/

i ;C
.t/
i /, where

m.t/
i D f��1
 C Z0W.


.t�1/
i /Zg�1Z0W.


.t�1/
i /f QY.
.t�1/i / �Xiˇg

C.t/ D f��1
 C Z0W.

.t�1/
i /Xig�1

Finally, for the covariance matrix�
 block, direct sampling from an inverse Wishart.�0 CN;V0 C S/ is
used, where S D

PN
iD1 
i


0
i=N .

The chain is initialized with random effects set to 0 and the covariance set to the identity matrix. Updating is
done first for the fixed effects, ˇ, as a block to position the chain in the correct region of the parameter space.
Then the random effects are updated, and finally the covariance of the random effects is updated. For more
information about this algorithm, see Gamerman (1997).
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Autocall Macros for Postprocessing
Although PROC BCHOICE provides a number of convergence diagnostic tests and posterior summary
statistics, it performs the calculations only for the default tests and statistics or only if you specify the
options in advance. If you want to analyze the posterior draws of unmonitored parameters or functions of
the parameters that are calculated in later DATA step calls, you can use the autocall macros that are listed in
Table 27.6.

Table 27.6 Postprocessing Autocall Macros

Macro Description

%ESS Effective sample sizes
%GEWEKE* Geweke diagnostic
%HEIDEL* Heidelberger-Welch diagnostic
%MCSE Monte Carlo standard errors
%POSTACF Autocorrelation
%POSTCOR Correlation matrix
%POSTCOV Covariance matrix
%POSTINT Equal-tail and HPD intervals
%POSTSUM Summary statistics
%RAFTERY Raftery diagnostic
*The %GEWEKE and %HEIDEL macros use a different optimization routine
than that used in PROC BCHOICE. As a result, there might be numerical
differences in some cases, especially when the sample size is small.

Table 27.7 lists options that are shared by all postprocessing autocall macros. For macro-specific options, see
Table 27.8.

Table 27.7 Shared Options

Option Description

DATA=SAS-data-set Names the input data set that contains posterior samples
OUT=SAS-data-set Specifies a name for the output SAS data set to contain the results
PRINT=YES | NO Displays the results (the default is YES)
VAR=variable-list Specifies the variables on which to perform the calculation

Suppose the data set that contains posterior samples is called Post and the variables of interest are defined in
the macro variable &PARMS. The following statements call the %ESS macro and calculate the effective
sample sizes for each variable:

%ESS(data=Post, var=Alpha Beta U_1-U_17)

By default, the ESS estimates are displayed. You can choose not to display the result and instead use the
following statement to save the output to a data set:

%ESS(data=Post, var=&parms, print=NO, out=eout)

Some of the macros can take additional options, which are listed in Table 27.8.
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Table 27.8 Macro-Specific Options

Macro Option Description

%ESS AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the ESS estimates. By default,
AUTOCORLAG=MIN(500, NOBS/4), where NOBS is the
sample size of the input data set.

HIST=YES | NO Displays a histogram of all ESS estimates. By default,
HIST=NO.

%GEWEKE FRAC1=numeric Specifies the earlier portion of the Markov chain used in the
test. By default, FRAC1=0.1.

FRAC2=numeric Specifies the latter portion of the Markov chain used in the test.
By default, FRAC2=0.5.

%HEIDEL SALPHA=numeric Specifies the ˛ level for the stationarity test. By default,
SALPHA=0.05.

HALPHA=numeric Specifies the ˛ level for the halfwidth test. By default,
HALPHA=0.05.

EPS=numeric Specifies a small positive number � such that if the halfwidth is
less than � times the sample mean of the remaining iterations,
the halfwidth test is passed. By default, EPS=0.1.

%MCSE AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the Monte Carlo standard error estimates. By
default, AUTOCORLAG=MIN(500, NOBS/4), where NOBS is
the sample size of the input data set.

%POSTACF LAGS=%str(numeric-list) Specifies which autocorrelation lags to calculate. The default
values are 1, 5, 10, and 50.

%POSTINT ALPHA=value Specifies the ˛ level .0 < ˛ < 1/ for the interval estimates. By
default, ALPHA=0.05.

%RAFTERY Q=numeric Specifies the order of the quantile of interest. By default,
Q=0.025.

R=numeric Specifies the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

S=numeric Specifies the probability of attaining the accuracy of the
estimation of the quantile. By default, S=0.95.

EPS=numeric Specifies the tolerance level for the stationary test. By default,
EPS=0.001.

For example, the following statement calculates and displays autocorrelation at lags 1, 6, 11, 50, and 100.
Note that the lags in the numeric-list must be separated by commas.

%PostACF(data=Post, var=&parms, lags=%str(1 to 15 by 5, 50, 100))

Regenerating Diagnostics Plots
By default, PROC BCHOICE generates three plots: the trace plot, the autocorrelation plot, and the kernel
density plot. Unless ODS Graphics is enabled before the procedure is called, it is hard to generate the
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same graph afterward. Directly using the Stat.BCHOICE.Graphics.TraceAutocorrDensity template
is not feasible. The easiest way to regenerate the same graph is to use the %TADPlot autocall macro. The
%TADPlot macro requires you to specify an input data set (which is the output data set from a previous
PROC BCHOICE call) and a list of variables that you want to plot.

Suppose that the output data set Postsamp contains posterior draws for the regression coefficients of Mode1,
Mode2, and Mode3. If you want to examine these parameters graphically, you can use the following
statements to regenerate the graphs:

ods graphics on;
%tadplot(data=Postsamp, var=Mode1 Mode2 Mode3)
ods graphics off;

Displayed Output
This section describes the displayed output from PROC BCHOICE. For a quick reference of all ODS table
names, see the section “ODS Table Names” on page 1053. ODS tables are arranged in four groups, listed
in the following sections: “Model- and Data-Related ODS Tables” on page 1050, “Sampling-Related ODS
Tables” on page 1051, “ODS Tables Related to Posterior Statistics” on page 1051, and “ODS Tables Related
to Convergence Diagnostics” on page 1052.

Model- and Data-Related ODS Tables

Model Information
The “Model Information” table (ODS table name ModelInfo) displays basic information about the model,
such as the name of the input data set, response variable, model type, sampling algorithm, burn-in size,
simulation size, thinning, and random number seed. The “Model Information” table is produced irrespective
of the sampling technique.

The “Model Information” table also displays the random number seed that is used to initialize the random
number generators. If you repeat the analysis and specify this seed value in the SEED= option in the PROC
BCHOICE statement, you get an identical stream of random numbers. This table is displayed by default.

Class Level Information
The “Class Level Information” table (ODS table name ClassLevels) lists the levels of every variable that is
specified in both the CLASS statement and the MODEL statement. You should check this information to
make sure that the data are correct. You can adjust the order of the CLASS variable levels by specifying the
ORDER= option in the CLASS statement. You can suppress the “Class Level Information” table completely
or partially by specifying the NOCLPRINT option in the PROC BCHOICE statement.

Choice Sets Summary
The “Choice Sets Summary” table (ODS table name ChoiceSummary) is displayed by default and should be
used to check the data entry. It shows the numbers of choice sets, the number of alternatives, and the number
of chosen and unchosen alternatives. You should always check this summary table to ensure that the data are
arrayed correctly. This table is displayed by default.
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Number of Observations
The “NObs” table (ODS table name NOBS) shows the number of observations in the data set and the number
of observations that are used in the analysis. By default, observations that have missing values are not used.
This table is displayed by default.

Sampling-Related ODS Tables

Parameters Initial Value
The “Parameters Initial” table (ODS table name ParametersInit) shows the initial value of each fixed regression
coefficient. This table is not displayed by default, but you can request it by specifying the option INIT=PINIT
in the MODEL statement.

Prior for Fixed Effects
The “Prior for Fixed Effects” table (ODS table name CoeffPrior) shows the prior distribution for the regression
coefficients. The table is displayed by default for a model with fixed effects.

ODS Tables Related to Posterior Statistics

PROC BCHOICE calculates some essential posterior statistics and outputs them to a number of ODS tables.
Some of the ODS tables are produced by default, and you can request others by specifying an option in
the PROC BCHOICE statement. For more information about the calculations, see the section “Summary
Statistics” on page 155.

Summary and Interval Statistics
The “Posterior Summaries and Intervals” table (ODS table name PostSumInt) contains basic summary and
interval statistics for each parameter. The table lists the number of posterior samples, the posterior mean
and standard deviation estimates, and the highest posterior density (HPD) interval estimates. This table is
displayed by default.

Summary Statistics
The “Posterior Summaries” table (ODS table name PostSummaries) contains basic statistics for each
parameter. The table lists the number of posterior samples, the posterior mean and standard deviation
estimates, and the percentile estimates. This table is not displayed by default, but you can request it by
specifying the option STATISTICS=SUM.

Correlation Matrix
The “Posterior Correlation Matrix” table (ODS table name Corr) contains the posterior correlation of
model parameters. This table is not displayed by default, but you can request it by specifying the option
STATISTICS=CORR.

Covariance Matrix
The “Posterior Covariance Matrix” table (ODS table name Cov) contains the posterior covariance of model
parameters. This table is not displayed by default, but you can request it by specifying the option STATIS-
TICS=COV.
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Deviance Information Criterion
The “Deviance Information Criterion” table (ODS table name DIC) contains the deviance information
criterion (DIC) of the model. This table is not displayed by default, but you can request it by specifying the
option DIC. For more information about the calculations, see the section “Deviance Information Criterion
(DIC)” on page 157.

Interval Statistics
The “Posterior Intervals” table (ODS table name PostIntervals) contains the equal-tail and highest posterior
density (HPD) interval estimates for each parameter. The default ˛ value is 0.05, and you can change it to
other levels by using the STATISTICS= option. This table is not displayed by default, but you can request it
by specifying the option STATISTICS=INT.

ODS Tables Related to Convergence Diagnostics

PROC BCHOICE provides convergence diagnostic tests that check for Markov chain convergence. The
procedure produces a number of ODS tables that you can request and save individually. For information
about calculation, see the section “Statistical Diagnostic Tests” on page 146.

Autocorrelation
The “Autocorrelations” table (ODS table name AUTOCORR) contains the first-order autocorrelations of the
posterior samples for each parameter. The Parameter column states the name of the parameter. By default,
PROC BCHOICE displays lag 1, 5, 10, and 50 estimates of the autocorrelations. You can request different
autocorrelations by using the DIAGNOSTICS=AUTOCORR(LAGS=) option. This table is displayed by
default.

Effective Sample Size
The “Effective Sample Sizes” table (ODS table name ESS) calculates the effective sample size of each
parameter. For more information, see the section “Effective Sample Size” on page 154. This table is displayed
by default.

Monte Carlo Standard Errors
The “Monte Carlo Standard Errors” table (ODS table name MCSE) calculates the standard errors of the
posterior mean estimate. For more information, see the section “Standard Error of the Mean Estimate”
on page 155. This table is not displayed by default, but you can request it by specifying the option
DIAGNOSTICS=MCSE.

Geweke Diagnostics
The “Geweke Diagnostics” table (ODS table name Geweke) lists the results of the Geweke diagnostic test.
For more information, see the section “Geweke Diagnostics” on page 148. This table is not displayed by
default, but you can request it by specifying DIAGNOSTICS=GEWEKE.

Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table (ODS table name Heidelberger) lists the results of the
Heidelberger-Welch diagnostic test. The test consists of two parts: a stationary test and a half-width
test. For more information, see the section “Heidelberger and Welch Diagnostics” on page 150. This table is
not displayed by default, but you can request it by specifying DIAGNOSTICS=HEIDEL.
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Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” table (ODS table name Raftery) lists the results of the Raftery-Lewis
diagnostic test. For more information, see the section “Raftery and Lewis Diagnostics” on page 151. This
table is not displayed by default, but you can request it by specifying DIAGNOSTICS=RAFTERY.

ODS Table Names
PROC BCHOICE assigns a name to each table that it creates. You can use these names to refer to the tables
when you use the output delivery system (ODS) to select tables and create output data sets. These names are
listed in Table 27.9. For more information about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

Table 27.9 ODS Tables Produced in PROC BCHOICE

ODS Table Name Description Statement or Option

AutoCorr Autocorrelation statistics for each
parameter

DIAG=AUTOCORR

ChoiceSummary Choice sets summary Default
ClassLevels Class level information Default
CoeffPrior Prior information for fixed effects Default
Corr Correlation matrix of the poste-

rior samples
STATS=CORR

Cov Covariance matrix of the poste-
rior samples

STATS=COV

DIC Deviance information criterion DIC
ESS Effective sample size for each pa-

rameter
Default

Geweke Geweke diagnostics for each pa-
rameter

DIAG=GEWEKE

Heidelberger Heidelberger-Welch diagnostics
for each parameter

DIAG=HEIDEL

MCSE Monte Carlo standard error for
each parameter

STATS=MCSE

ModelInfo Model information Default
NObs Number of observations Default
ParametersInit Parameter initial values INIT=PINIT
PostSumInt Brief posterior statistics for each

parameter, including sample size,
mean, standard deviation, and
HPD intervals

Default

PostIntervals Equal-tail and HPD intervals for
each parameter

STATS=INT

PostSummaries Basic posterior statistics for each
parameter, including sample size,
mean, standard deviation, and per-
centiles

STATS=SUM

Raftery Raftery-Lewis diagnostics for
each parameter

DIAG=RAFTERY
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ODS Graphics
You can refer by name to every graph that is produced through ODS Graphics. The names of the graphs that
PROC BCHOICE generates are listed in Table 27.10.

Table 27.10 Graphs Produced by PROC BCHOICE

ODS Graph Name Plot Description Statement and Option

ADPanel Autocorrelation function
and density panel

PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

PLOTS=AUTOCORR

AutocorrPlot Autocorrelation function
plot

PLOTS(UNPACK)=AUTOCORR

DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and
autocorrelation function
panel

PLOTS=(TRACE AUTOCORR DENSITY)

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Examples: BCHOICE Procedure

Example 27.1: Alternative-Specific and Individual-Specific Effects
In many situations, a choice model that includes characteristics of both the alternatives and the individuals is
needed for investigating consumer choice.

Consider an example of travel demand. People are asked to choose among travel by auto, plane, or public
transit (bus or train). The following SAS statements create the data set Travel. The variables AutoTime,
PlanTime, and TranTime represent the total travel time that is required to get to a destination by using auto,
plane, or public transit, respectively. The variable Age represents the age of each individual who is surveyed,
and the variable Chosen contains each individual’s choice of travel mode.

data Travel;
input AutoTime PlanTime TranTime Age Chosen $;
AgeCtr=Age-34;
datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
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4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto
10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto
22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane
11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto
12.0 3.0 11.0 33 Plane
18.0 5.5 20.0 30 Plane
23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto
12.5 3.5 15.5 35 Plane
1.5 4.0 2.0 22 Auto
;

In this example, the AutoTime, PlanTime, and TranTime variables apply to the alternatives, whereas Age is a
characteristic of the individuals. AgeCtr, a centered version of Age, is created by subtracting the sample’s
mean age from each individual’s age. To study how the choice depends on both the travel time and age of the
individuals, you need to incorporate both types of variables.

Before you invoke PROC BCHOICE to fit a choice logit model, you must arrange your data in such a way
that there is one observation for each combination of individual and alternative. In this example, let Subject
identify the individuals, let TravTime represent the travel time for each mode of transportation, and let Choice
have the value 1 if the alternative is chosen and 0 otherwise. The following SAS statements rearrange the
data set Travel into a new data set, Travel2, and display the first nine observations:

data Travel2(keep=Subject Mode TravTime Age AgeCtr Choice);
array Times[3] AutoTime PlanTime TranTime;
array Allmodes[3] $ _temporary_ ('Auto' 'Plane' 'Transit');
set Travel;
Subject = _n_;
do i = 1 to 3;

Mode = Allmodes[i];
TravTime = Times[i];
Choice = (Chosen eq Mode);
output;

end;
run;
proc print data=Travel2 (obs=20);

by Subject;
id Subject;

run;

The data for the first nine observations is shown in Output 27.1.1.
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Output 27.1.1 Data for the First Nine Observations

Age Trav
Subject Age Ctr Mode Time Choice

1 32 -2 Auto 10.0 0
32 -2 Plane 4.5 1
32 -2 Transit 10.5 0

Age Trav
Subject Age Ctr Mode Time Choice

2 13 -21 Auto 5.5 1
13 -21 Plane 4.0 0
13 -21 Transit 7.5 0

Age Trav
Subject Age Ctr Mode Time Choice

3 41 7 Auto 4.5 0
41 7 Plane 6.0 0
41 7 Transit 5.5 1

Notice that each subject in the data set Travel corresponds to a block of three observations in the data set
Travel2, one for each travel alternative. The response variable Choice indicates the chosen alternative by the
value 1 and the unchosen alternative by the value 0; exactly one alternative is chosen. The following SAS
statements invoke PROC BCHOICE to fit the choice logit model:

proc bchoice data=Travel2 seed=124;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject);

run;

The “Choice Sets Summary” table shows that there are 21 choice sets and that each consists of three
alternatives and one chosen alternative (each subject chooses one out of the three travel modes). It seems that
the data are arrayed correctly.

Output 27.1.2 Choice Sets Summary

The BCHOICE Procedure

Choice Sets Summary

Choice Total Chosen Not
Pattern Sets Alternatives Alternatives Chosen

1 21 3 1 2

Summary statistics are shown in Output 27.1.3.
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Output 27.1.3 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Mode Auto 5000 -0.1678 0.7440 -1.7017 1.2396
Mode Plane 5000 -1.8794 1.2683 -4.6055 0.3801
TravTime 5000 -0.5695 0.2047 -0.9943 -0.2328

When Transit is the reference mode (normalized to 0), the part-worth (posterior mean) of Auto, which is
negative, might reflect that driving is more inconvenient than traveling by bus or train, and the negative
part-worth of Plane might reflect that traveling by plane is more expensive than traveling by bus or train.
However, neither is statistically significant, because both the 95% HPD intervals have 0 in them. The posterior
mean of TravTime is negative, and the estimate is significant. These results make sense because having to
spend more time en route is often unfavorable.

To study the relationship between the choice of transportation and the age of people who make the choice,
you need to create an interaction between AgeCtr and Mode. AgeCtr is not estimable by itself, because it is
the same throughout a choice set for an individual. The following statements request the interaction between
AgeCtr and Mode:

proc bchoice data=Travel2 seed=124;
class Mode Subject / param=ref order=data;
model Choice = Mode Mode*AgeCtr TravTime / choiceset=(Subject);

run;

Output 27.1.4 PROC BCHOICE Posterior Summary Statistics

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Mode Auto 5000 -0.2634 0.7883 -1.8072 1.1395
Mode Plane 5000 -2.8210 1.5370 -5.9228 -0.0686
AgeCtr*Mode Auto 5000 -0.0986 0.0678 -0.2182 0.0350
AgeCtr*Mode Plane 5000 0.0251 0.0775 -0.1268 0.1618
TravTime 5000 -0.7608 0.2564 -1.2943 -0.3473

The parameter estimate for Mode Auto reflects the part-worth of Auto for an individual of mean age (34 years
old), whereas the parameter estimate for Mode Plane is the part-worth of Plane for an individual of mean
age. There are two interaction effects: the first corresponds to the effect of a one-unit change in age on the
probability of choosing Auto over Transit, and the second corresponds to the effect of a one-unit change in
age on the probability of choosing Plane over Transit.
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Example 27.2: Nested Logit Modeling
The standard logit model imposes the restriction of the independence from irrelevant alternatives (IIA)
property, which implies proportional substitution across alternatives. When the IIA assumption does not hold,
models with more flexibility are needed.

One of the most widely used models is called the nested logit. In a nested logit model, all the alternatives in a
choice set can be partitioned into nests in such a way that the following conditions are true:

• The ratio of any two alternatives that are in the same nest is independent of the existence of all other
alternatives. Hence, the IIA assumption holds within each nest.

• The ratio of any two alternatives that are in different nests is not independent of the existence of other
alternatives in the two nests. Hence, the IIA assumption does not hold between different nests.

For more information about nested logit models, see the section “Nested Logit” on page 1036.

In the previous example of travel demand data, people are asked to choose among travel by auto, plane, or
public transit. It seems that auto and public transit are more similar to each other than either of them are to
plane, because the probability of choosing auto and public transit might rise by about the same proportion
whenever the option of taking a plane is unavailable. A nested logit model that places auto and public transit
in one nest and plane in another nest might seem more reasonable than the standard logit model.

You specify a nested logit model by using the TYPE=NLOGIT option, and you allocate the nests by using
the NEST= option. In the following code, NEST=(1 2 1) implies that travel alternatives 1 (auto) and 3 (public
transit) are in the first nest and travel alternative 2 (plane) is in the second nest. There are two nests in total.

The deviance information criterion (DIC) is used to select the model. The “Deviance Information Criterion”
table (ODS table name DIC) contains the DIC of the model. The table is not displayed by default, but you can
request it by specifying the DIC option in the PROC BCHOICE statement. For more information about the
calculations, see the section “Deviance Information Criterion (DIC)” on page 157. The DIC option requests
the calculation of DIC.

proc bchoice data=Travel2 seed=124 dic;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject) type=nlogit nest=(1 2 1);

run;

Output 27.2.1 PROC BCHOICE Posterior Summary Statistics and DIC

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Mode Auto 5000 -0.2283 0.6911 -1.6005 1.1456
Mode Plane 5000 -2.0001 1.1697 -4.1169 0.3449
TravTime 5000 -0.5568 0.1979 -0.9243 -0.1872
Lambda 1 5000 0.8867 0.3557 0.2407 1.5001
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Output 27.2.1 continued

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 32.925
Dmean (Deviance Evaluated at Posterior Mean) 30.289
pD (Effective Number of Parameters) 2.636
DIC (Smaller is Better) 35.561

There are two alternatives in the first nest and one alternative in the second nest. A nest that has only one
alternative is degenerate; therefore its � is not estimable. This explains why there is only one � estimate in
the output.

The following statements revisit the standard logit model (the default type) that is discussed in the previous
example and request that the calculation of DIC be displayed:

proc bchoice data=Travel2 seed=124 dic;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject);

run;

Output 27.2.2 PROC BCHOICE Posterior Summary Statistics and DIC

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Mode Auto 5000 -0.1678 0.7440 -1.7017 1.2396
Mode Plane 5000 -1.8794 1.2683 -4.6055 0.3801
TravTime 5000 -0.5695 0.2047 -0.9943 -0.2328

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 33.217
Dmean (Deviance Evaluated at Posterior Mean) 30.440
pD (Effective Number of Parameters) 2.777
DIC (Smaller is Better) 35.994

The DIC values are very close. A smaller DIC value indicates a better fit to the data; hence, the nested logit
model might be a little better.
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Example 27.3: Probit Modeling
A more general model is the probit model, which is derived under the assumption of jointly normal random
utility components, where the error vector has a multivariate normal distribution with a mean vector of 0
and a covariance matrix †. For a full covariance matrix, PROC BCHOICE can accommodate any pattern of
correlation and heteroscedasticity. Thus, this model fits a very general error structure. For more information
about probit models, see the section “Probit” on page 1038.

In Train (2009), a project team collected the following data from commuters about four available travel
modes for their trips to work: car alone, carpool, bus, and railway. The time and cost of travel for each mode
were determined for each commuter, based on the location of the commuter’s home and workplace.

data Commuter;
input Subject Mode Choice Cost Time @@;
datalines;

1 1 1 1.51 18.5 1 2 0 2.34 26.34 1 3 0 1.8 20.87 1 4 0 2.36 30.03 2 1 0
6.06 31.31 2 2 0 2.9 34.26 2 3 0 2.24 67.18 2 4 1 1.86 60.29 3 1 1 5.79
22.55 3 2 0 2.14 23.26 3 3 0 2.58 63.31 3 4 0 2.75 49.17 4 1 1 1.87
26.09 4 2 0 2.57 29.9 4 3 0 1.9 19.75 4 4 0 2.27 13.47 5 1 1 2.5 4.7 5 2
0 1.72 12.41 5 3 0 2.69 43.09 5 4 0 2.97 39.74 6 1 1 4.73 3.07 6 2 0
0.62 9.22 6 3 0 1.85 12.83 6 4 0 2.31 43.54 7 1 1 4.73 13.14 7 2 0 0.6
17.77 7 3 0 2.43 54.09 7 4 0 2 42.22 8 1 1 5.35 52.9 8 2 0 2.91 48.78 8
3 0 2.61 69.16 8 4 0 2.78 53.25 9 1 0 4.41 61.06 9 2 0 1.59 62.13 9 3 1

... more lines ...

450 1 1 4.59 29.44 450 2 0 2.89 33.73 450 3 0 1.9 66.12 450 4 0 1.79
39.84 451 1 1 3.24 16.35 451 2 0 1.21 18.98 451 3 0 1.75 23.39 451 4 0
2.02 43.3 452 1 0 6.93 65.42 452 2 0 1.17 60.48 452 3 1 2.46 52.4 452 4
0 2.61 48.37 453 1 0 6.53 59.57 453 2 1 1.41 55.14 453 3 0 2.21 67.82
453 4 0 1.86 73.45
;
proc print data=Commuter(obs=20);
run;

The variable Mode has the value 1 for car alone, 2 for carpool, 3 for bus, and 4 for railway. The variable
Choice is the response variable that represents the decision among the four travel modes for each commuter.
The data for the first five commuters are shown in Output 27.3.1.
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Output 27.3.1 Data for the First Five Commuters

Obs Subject Mode Choice Cost Time

1 1 1 1 1.51 18.50
2 1 2 0 2.34 26.34
3 1 3 0 1.80 20.87
4 1 4 0 2.36 30.03
5 2 1 0 6.06 31.31
6 2 2 0 2.90 34.26
7 2 3 0 2.24 67.18
8 2 4 1 1.86 60.29
9 3 1 1 5.79 22.55

10 3 2 0 2.14 23.26
11 3 3 0 2.58 63.31
12 3 4 0 2.75 49.17
13 4 1 1 1.87 26.09
14 4 2 0 2.57 29.90
15 4 3 0 1.90 19.75
16 4 4 0 2.27 13.47
17 5 1 1 2.50 4.70
18 5 2 0 1.72 12.41
19 5 3 0 2.69 43.09
20 5 4 0 2.97 39.74

The following statements fit a probit model by specifying TYPE=PROBIT. The BCHOICE procedure’s
implementation of the Gibbs sampler for the probit model exhibits a higher autocorrelation than that for the
logit model. High autocorrelation is created by introducing the latent variable via data augmentation because
of the dependence between the latent variable and the regression parameters. You might want to control
the thinning rate of the simulation. For example, THIN=10 keeps every 10th sample in the simulation and
discards the rest.

proc bchoice data=Commuter outpost=Commupostsamp thin=10 nmc=50000 seed=123;
class Mode(ref='1') Subject;
model Choice = Cost Time Mode / choiceset=(Subject) type=probit;

run;

Output 27.3.2 shows the summary statistics for the part-worth (ˇ) of each of the attributes (Cost, Time,
Mode 2, Mode 3, and Mode 4) and the covariance of the error difference vector ( Q†), which is displayed by
parameters labeled “Sigma 1 1,” “Sigma 2 1,” and so on.
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Output 27.3.2 Posterior Summary Statistics

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Cost 5000 -0.4641 0.0736 -0.6152 -0.3299
Time 5000 -0.0494 0.00567 -0.0603 -0.0377
Mode 2 5000 -3.3847 0.6746 -4.8022 -2.1983
Mode 3 5000 -2.0056 0.2853 -2.5709 -1.4590
Mode 4 5000 -1.6277 0.2085 -2.0489 -1.2382
Sigma 1 1 5000 1.0000 0 1.0000 1.0000
Sigma 2 1 5000 1.1695 0.5505 0.0179 2.2003
Sigma 2 2 5000 4.3809 1.9423 1.3685 8.3868
Sigma 3 1 5000 0.5700 0.2203 0.1429 1.0094
Sigma 3 2 5000 1.6328 0.9052 -0.00171 3.6863
Sigma 3 3 5000 1.3917 0.4795 0.5699 2.3242

It is well known that an identification problem exists in probit models, because location and scale transforma-
tions do not change the choices that are made. The solution to the location shift is differencing with respect
to the last alternative in each choice set. (See the section “Probit” on page 1038.) After that, a scale shift
problem remains, because the parameters .cˇ; c2 Q†/ for any constant c > 0 are equivalent to .ˇ; Q†/. A
solution to the scaling problem is to normalize the parameters with respect to one of the diagonal elements of
the covariance of the error difference vector, Q†. PROC BCHOICE reports .ˇ=

p
�11; Q†=�11/ at each draw,

where �11 is the first diagonal entry of Q†. This explains why “Sigma 1 1” is always 1 in Output 27.3.2.

By the IIA property in a logit model, it is assumed that all alternatives are independent and have the same
variance. Therefore, the normalized covariance matrix after differencing with respect to one of the alternatives
is of the form

Q† D

0@ 1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

1A
Obviously, this matrix is quite different from the estimated normalized covariance matrix for this data set.
Fitting a standard logit model would be inappropriate.
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Example 27.4: A Random-Effects-Only Logit Model
This example revisits the trash can study that is described earlier in this chapter in the getting-started section
“A Logit Model with Random Effects” on page 1011.

If you want to create a random-effects-only model using the random walk Metropolis sampling as suggested
in Rossi, Allenby, and McCulloch (2005), you can add the ALG=RWM option to the PROC BCHOICE
statement to specify the random walk Metropolis sampling algorithm, add the REMEAN option to the
RANDOM statement to request estimation of the nonzero mean of the random effects, and not specify any
fixed effects in the MODEL statement as follows:

proc bchoice data=Trashcan outpost=Postsamp seed=123 nmc=40000 thin=4
alg=rwm nthreads=4;

class ID Task;
model Choice = / choiceset=(ID Task);
random Touchless Steel AutoBag Price80 / sub=ID remean

monitor=(1 to 5) type=un;
run;

The NTHREADS option in the PROC BCHOICE statement specifies the number of threads to be used for
analytic computations and sampling. Using four threads at the same time enhances the efficiency and reduces
the run time by about four times. If you do not specify the NTHREADS option, the default number is 1. The
maximum number of threads should not exceed the total number of CPUs on the host where the analytic
computations execute.

Summary statistics for the mean of the random coefficients ( N
), the covariance of the random coefficients
(�
 ), and the random coefficients (
i ) for the first five individuals are shown in Output 27.4.1.
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Output 27.4.1 Posterior Summary Statistics

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter Subject N Mean Deviation 95% HPD Interval

REMean Touchless 10000 1.7124 0.2660 1.1859 2.2359
REMean Steel 10000 1.0504 0.2610 0.5677 1.5814
REMean AutoBag 10000 2.1839 0.3497 1.5420 2.9100
REMean Price80 10000 -4.6499 0.6400 -5.9539 -3.4282
RECov Touchless, Touchless 10000 3.0571 1.1503 1.3122 5.2392
RECov Steel, Touchless 10000 -0.4706 1.0031 -2.2026 1.1375
RECov Steel, Steel 10000 2.6142 1.0170 1.0026 4.5185
RECov AutoBag, Touchless 10000 -0.7271 0.9559 -2.6179 1.0821
RECov AutoBag, Steel 10000 -0.00084 0.8108 -1.5522 1.4319
RECov AutoBag, AutoBag 10000 3.6211 1.5239 1.2185 6.7463
RECov Price80, Touchless 10000 -1.2188 1.1945 -3.6437 0.8218
RECov Price80, Steel 10000 -1.5669 1.2639 -4.1530 0.7019
RECov Price80, AutoBag 10000 -2.2400 1.6576 -5.5705 0.6001
RECov Price80, Price80 10000 7.6739 3.1808 2.3981 14.0942
Touchless ID 1 10000 2.1940 1.0468 0.2013 4.2928
Steel ID 1 10000 0.7208 1.0666 -1.2843 2.8607
AutoBag ID 1 10000 3.7719 1.4263 1.1515 6.6288
Price80 ID 1 10000 -5.1558 2.2854 -9.8578 -1.0303
Touchless ID 2 10000 -0.0412 0.8572 -1.6932 1.6535
Steel ID 2 10000 -0.3953 0.8200 -2.0387 1.1833
AutoBag ID 2 10000 2.7178 1.3321 0.1872 5.3265
Price80 ID 2 10000 0.00135 1.3107 -2.5173 2.6351
Touchless ID 3 10000 1.1149 0.9607 -0.6416 3.1861
Steel ID 3 10000 1.6568 0.9606 -0.1567 3.6094
AutoBag ID 3 10000 0.3119 1.1598 -2.0512 2.4132
Price80 ID 3 10000 -0.9705 1.5496 -4.0250 2.0511
Touchless ID 4 10000 1.1545 0.9697 -0.7475 3.0413
Steel ID 4 10000 1.3730 0.9891 -0.5385 3.3589
AutoBag ID 4 10000 3.1780 1.4497 0.5477 6.1348
Price80 ID 4 10000 -6.5924 2.4704 -11.4607 -1.8296
Touchless ID 5 10000 0.4705 1.1716 -1.7910 2.7956
Steel ID 5 10000 2.6725 1.2193 0.5348 5.1762
AutoBag ID 5 10000 3.4376 1.6172 0.5508 6.7088
Price80 ID 5 10000 -5.0509 2.5350 -10.0811 -0.1987

The average part-worths ( N
) for touchless opening, steel material, automatic trash bag replacement, and price,
which are shown as “REMean Touchless,” “REMean Steel,” “REMean AutoBag,” and “REMean Price80,”
are very similar to the estimates of the fixed effects in the previous model as shown in Figure 27.9, indicating
the equivalence of these two setups. The covariance estimates of the random coefficients (�
 ) are also very
similar.

The next set of parameters show the estimates for the random effects for the first five respondents (see
Output 27.4.1). However, these estimates are no longer the deviation from the overall means but are their
own effects. The part-worth for touchless opening for the first respondent (ID 1) is 2.2, which is close to the
part-worth that is estimated in the model as shown in Figure 27.9.
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A caterpillar plot is a side-by-side bar plot of the 95% intervals for multiple variables. A caterpillar plot is
usually used to visualize and compare random-effects parameters, which can exist in large numbers in certain
models. You can use the %CATER autocall macro to create a caterpillar plot. The %CATER macro requires
you to specify an input data set and a list of variables that you want to plot.

In this example, the output data set Postsamp contains posterior draws for all the random-effects parameters.
The following statements generate a caterpillar plot for Touchless:

ods graphics on;
%CATER(data=Postsamp, var=Touchless_ID_:)

Output 27.4.2 is a caterpillar plot of the random effects of touchless opening for the 104 participants in this
study. It displays the heterogeneity in preferences for touchless opening among the sample. As shown, the
individuals have diverse preferences for the feature of touchless opening for a trash can. Heterogeneity of
preferences is an important aspect of the model, and ignoring its presence can lead to incorrect inferences.

Output 27.4.2 Caterpillar Plot of the Random-Effects Parameters

If you want to change the display of the caterpillar plot (for example, to use a different line pattern, color, or
size of the markers), you must first modify the Stat.MCMC.Graphics.Caterpillar template and then call
the %CATER macro again.

Example 27.5: Heterogeneity Affected by Individual Characteristics
Rossi, Allenby, and McCulloch (2005) studied a scanner panel data about purchases of margarine. The data
were first analyzed in Allenby and Rossi (1991) and are about purchases of ten brands of margarine. This
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example considers a subset of data about six margarine brands: Parkay stick, Blue Bonnet stick, Fleischmann’s
stick, a house brand stick, a generic stick, and Shedd’s Spread tub. There are 313 households, which made a
total of 3,405 purchases. Information about a few demographic characteristics of these households (income
and family size) is expected to have effects on the central location of the distribution of heterogeneity.

The data set, which is called Sashelp.Margarin, comes from the SASHELP library.
proc print data=Sashelp.Margarin (obs=24);

by HouseID Set;
id HouseID Set;

run;

The data for the first four choice sets are shown in Figure 27.5.1.

Output 27.5.1 Data for the First Four Choice Sets

Fam
HouseID Set Choice Brand LogPrice LogInc Size

2100016 1 1 PPk -0.41552 3.48124 2
0 PBB -0.40048 3.48124 2
0 PFl 0.08618 3.48124 2
0 PHse -0.56212 3.48124 2
0 PGen -1.02165 3.48124 2
0 PSS -0.16252 3.48124 2

Fam
HouseID Set Choice Brand LogPrice LogInc Size

2100016 2 1 PPk -0.46204 3.48124 2
0 PBB -0.40048 3.48124 2
0 PFl -0.01005 3.48124 2
0 PHse -0.56212 3.48124 2
0 PGen -1.02165 3.48124 2
0 PSS -0.16252 3.48124 2

Fam
HouseID Set Choice Brand LogPrice LogInc Size

2100016 3 1 PPk -1.23787 3.48124 2
0 PBB -0.69315 3.48124 2
0 PFl -0.01005 3.48124 2
0 PHse -0.56212 3.48124 2
0 PGen -1.02165 3.48124 2
0 PSS -0.23572 3.48124 2

Fam
HouseID Set Choice Brand LogPrice LogInc Size

2100016 4 1 PPk -0.47804 3.48124 2
0 PBB -0.49430 3.48124 2
0 PFl -0.01005 3.48124 2
0 PHse -0.56212 3.48124 2
0 PGen -1.02165 3.48124 2
0 PSS -0.16252 3.48124 2
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The variable HouseID represents the household ID, and each household made at least five purchases, which
are defined by Set. The variable Choice represents the choice made among the six margarine brands for each
purchase or choice set. The variable Brand has the value PPK for Parkay stick, PBB for Blue Bonnet stick,
PFL for Fleischmann’s stick, PHse for the house brand stick, PGen for the generic stick, and PSS for Shedd’s
Spread tub. The variable LogPrice is the logarithm of the product price. The variables LogInc and variable
FamSize provide information about household income and family size, respectively.

For the purpose of comparison, the following statements fit the random-effects-only logit model by using
random walk Metropolis sampling as suggested in Rossi, Allenby, and McCulloch (2005):

proc bchoice data=Sashelp.Margarin seed=123 nmc=20000 thin=4 alg=rwm nthreads=4;
class Brand(ref='PPk') HouseID Set;
model Choice = / choiceset=(HouseID Set);
random Brand LogPrice / subject=HouseID remean=(LogInc FamSize)

type=un monitor=(1);
run;

The ALG=RWM option in the PROC BCHOICE statement requests the random walk Metropolis sampling
algorithm, and the REMEAN=(LOGINC FAMSIZE) option in the RANDOM statement requests estimation
of the nonzero mean of the random effects, which is a function of household income and family size. No fixed
effects are specified in the MODEL statement. The NMC=20000 option in the PROC BCHOICE statement
runs the chain for 20,000 iterations, and the THIN=4 option keeps one of every four samples. Summary
statistics for the mean matrix of the random coefficients (� ), the covariance of the random coefficients (�
 ),
and the random coefficients (
i ) for the first household are shown in Output 27.5.2.
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Output 27.5.2 Posterior Summary Statistics

The BCHOICE Procedure

Posterior Summaries and Intervals

Standard
Parameter Subject N Mean Deviation 95% HPD Interval

REMean Brand PBB 5000 -1.1809 0.6122 -2.3775 -0.0144
REMean Brand PFl 5000 -3.5116 2.0188 -7.5975 0.2097
REMean Brand PGen 5000 -4.9821 1.1709 -7.2338 -2.6884
REMean Brand PHse 5000 -3.2291 0.8966 -5.0406 -1.5415
REMean Brand PSS 5000 -0.0157 1.2214 -2.4096 2.3238
REMean LogPrice 5000 -3.3194 0.8545 -5.0431 -1.6453
REMean Brand PBB LogInc 5000 0.0550 0.2043 -0.3367 0.4451
REMean Brand PFl LogInc 5000 0.8263 0.6562 -0.4800 2.0819
REMean Brand PGen LogInc 5000 -0.5483 0.3930 -1.3391 0.2101
REMean Brand PHse LogInc 5000 0.0272 0.3023 -0.5640 0.6158
REMean Brand PSS LogInc 5000 -0.5861 0.4168 -1.3908 0.2276
REMean LogPrice LogInc 5000 -0.3175 0.2990 -0.8955 0.2697
REMean Brand PBB FamSize 5000 -0.0336 0.0966 -0.2275 0.1437
REMean Brand PFl FamSize 5000 -0.7625 0.3231 -1.4176 -0.1522
REMean Brand PGen FamSize 5000 0.5773 0.1836 0.2248 0.9402
REMean Brand PHse FamSize 5000 0.2346 0.1352 -0.0467 0.4808
REMean Brand PSS FamSize 5000 0.0406 0.1997 -0.3719 0.4186
REMean LogPrice FamSize 5000 0.1085 0.1331 -0.1504 0.3580
RECov Brand PBB, Brand PBB 5000 2.1824 0.3916 1.4411 2.9386
RECov Brand PFl, Brand PBB 5000 2.0848 0.8517 0.4737 3.7633
RECov Brand PFl, Brand PFl 5000 13.1762 3.9078 6.3684 21.0989
RECov Brand PGen, Brand PBB 5000 1.9526 0.5760 0.8471 3.0718
RECov Brand PGen, Brand PFl 5000 1.5669 1.7949 -1.6053 5.2591
RECov Brand PGen, Brand PGen 5000 8.3864 1.3307 6.0342 11.1880
RECov Brand PHse, Brand PBB 5000 1.5108 0.4554 0.6690 2.4392
RECov Brand PHse, Brand PFl 5000 2.4807 1.3482 -0.2733 4.9664
RECov Brand PHse, Brand PGen 5000 5.7498 0.9319 4.0263 7.6664
RECov Brand PHse, Brand PHse 5000 5.4675 0.8456 3.8925 7.1852
RECov Brand PSS, Brand PBB 5000 1.1780 0.6307 -0.0181 2.4864
RECov Brand PSS, Brand PFl 5000 0.8534 2.1434 -3.5777 5.0734
RECov Brand PSS, Brand PGen 5000 4.9601 1.1765 2.7987 7.4216
RECov Brand PSS, Brand PHse 5000 3.4612 0.8947 1.8634 5.3448
RECov Brand PSS, Brand PSS 5000 8.8466 1.7773 5.5686 12.3094
RECov LogPrice, Brand PBB 5000 -0.2652 0.3179 -0.8778 0.3718
RECov LogPrice, Brand PFl 5000 2.1725 0.8906 0.4017 3.8500
RECov LogPrice, Brand PGen 5000 -1.1063 0.5708 -2.2724 -0.0595
RECov LogPrice, Brand PHse 5000 -0.4487 0.4543 -1.2981 0.4822
RECov LogPrice, Brand PSS 5000 0.1428 0.6313 -1.0706 1.3744
RECov LogPrice, LogPrice 5000 2.0727 0.4839 1.1196 3.0223
Brand PBB HouseID 2100016 5000 -2.2892 1.0105 -4.3643 -0.4129
Brand PFl HouseID 2100016 5000 -4.1063 2.7737 -9.7447 0.5782
Brand PGen HouseID 2100016 5000 -6.5999 1.6118 -9.7086 -3.5667
Brand PHse HouseID 2100016 5000 -2.9469 1.1851 -5.3047 -0.7302
Brand PSS HouseID 2100016 5000 -3.3378 2.1715 -7.5906 0.7075
LogPrice HouseID 2100016 5000 -4.4983 1.1717 -6.8224 -2.2033
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Table 27.11 collects the posterior means and standard deviations of N� that are shown in Output 27.5.2. The
first column corresponds to the parameters that are specified in the model, namely the brands and price. The
second column shows the average part-worths of each brand (versus the brand, Parkay stick) and the price
at LogInc=0 and FamSize=0. The LogInc and Age columns list the modifying effects on the preference
for each brand and price by household income and family size, respectively. Larger families show more
interest in the generic and house brands and tend to stay away from the Fleischmann’s brand. For example,
consider the part-worth estimates for Fleischmann’s. The posterior mean for REMean Brand PFI FamSize
(the Fleischmann’s row and the Famsize column) is –0.76 with a standard deviation of 0.32, meaning that an
additional unit increase in family size is associated with a reduction of 0.76 in the estimated part-worth for
Fleischmann’s. In general, the demographics of households are only weakly associated with preference for
brand and price. These results are in good agreement with those of Rossi, Allenby, and McCulloch (2005).

Table 27.11 Posterior Mean and Standard Deviation of �

Parameter Intercept LogInc FamSize
Blue Name REMean Brand PBB REMean Brand PBB LogInc REMean Brand PBB FamSize

Bonnet Mean –1.18 0.06 –0.03
Std 0.61 0.20 0.10

Fleisch- Name REMean Brand PFI REMean Brand PFI LogInc REMean Brand PFI FamSize
mann’s Mean –3.51 0.83 –0.76

Std 2.02 0.66 0.32
Name REMean Brand PGen REMean Brand PGen LogInc REMean Brand PGen FamSize

Generic Mean –4.98 –0.55 0.58
Std 1.17 0.39 0.18

Name REMean Brand PHse REMean Brand PHse LogInc REMean Brand PHse FamSize
House Mean –3.23 0.03 0.23

Std 0.90 0.30 0.14
Shedd’s Name REMean Brand PSS REMean Brand PSS LogInc REMean Brand PSS FamSize
Spread Mean –0.02 –0.59 –0.04

Std 1.22 0.42 0.20
Name REMean LogPrice REMean LogPrice LogInc REMean LogPrice FamSize

LogPrice Mean –3.32 –0.32 0.11
Std 0.85 0.30 0.13

Because the demographic variables are not zero-centered, the Intercept column shows the average part-worths
of each brand and price for households with LogInc=0 and FamSize=0, which are not very meaningful. It
is better to center demographic variables by their means, so that the posterior means listed in the Intercept
column can be interpreted as the part-worths of a household that has an average income and average size.

Nevertheless, you can obtain the utilities of households that have any income levels and sizes. For example,
the average part-worth of the Fleischmann’s brand for a household with average income (LogInc=3.1) and
family size (FamSize=3) would be as follows, because the estimated LogInc coefficient is 0.83 and the
estimated FamSize coefficient is –0.76 for Fleischmann’s:

�3:51C 0:83 � 3:1 � 0:76 � 3 D �3:22

You can obtain part-worths for all other brands and compare their popularity among average households.

The posterior means and standard deviations of the covariance matrix of the random coefficients (�
 ) are
displayed by parameters that are labeled “RECov Brand PBB, Brand PBB,” “RECov Brand PFI, Brand PBB,”
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and so on. Some of the diagonal terms are fairly large, indicating that there is quite a bit of heterogeneity
between households in margarine brand preference and price sensitivity. The covariance between the generic
and house brands, “RECov Brand PHse, Brand PGen,” is fairly large, suggesting that household preferences
for these two brands are highly correlated.

The next set of parameters, which are displayed in Output 27.5.2, contain the estimates for the random effects
for the first household.

Example 27.6: Inference on Quantities of Interest
It is easy to give a model an odds interpretation in terms of a probability ratio. The odds of choosing
alternative a instead of alternative b while holding all other attributes or conditions the same are

ODDSab D
Pa

Pb
D

exp .ˇa/
exp .ˇb/

D exp .ˇa � ˇb/

where Pa and Pb are the probabilities of choosing alternative a and b, respectively.

In “Example 27.1: Alternative-Specific and Individual-Specific Effects” on page 1054, a study for travel
demand was considered. Summary statistics of that study are displayed again in Output 27.6.1 for the purpose
of illustration.

Output 27.6.1 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Standard
Parameter N Mean Deviation 95% HPD Interval

Mode Auto 5000 -0.1678 0.7440 -1.7017 1.2396
Mode Plane 5000 -1.8794 1.2683 -4.6055 0.3801
TravTime 5000 -0.5695 0.2047 -0.9943 -0.2328

The overall probability ratio of choosing airplane as opposed to public transit (which is the reference category)
simplifies to

ODDS(Plane vs. Transit) D
P.Plane/
P.Transit/

D
exp .�1:88/

exp .0/
D 0:15

This ratio indicates that the likelihood of choosing planes as means of travel is 0.15 times that of choosing
public transit. Public transit is a lot more favorable than planes.

The overall probability ratio of choosing a plane instead of an automobile is

ODDS(Plane vs. Auto) D
P.Plane/
P.Transit/

D
exp .�1:88/
exp .�0:17/

D 0:18

You can derive the probabilities for any alternatives and any combinations of attributes, even imaginary ones,
after you obtain the parameter estimates.
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Although it is easy to obtain the point estimates, sometimes you might want to estimate other quantities,
such as the standard deviations or various quantiles. If you are interested in making inference based on any
quantities that are transformations of the random variables, you can do it either directly in PROC BCHOICE
or by using the DATA step after you run the simulation.

Suppose you want to set the reference category as Plane so that you can directly compare the other two
modes with it. You can specify REF=’PLANE’ in the CLASS statement and rerun the PROC BCHOICE
simulation. You can also use the DATA step to calculate the quantities of interest. The following DATA step
uses the simulated values of Mode_Auto and Mode_Plane from the output data set Bsamp to create a new
series of posterior samples for Auto_Plane, a new variable that is created to directly compare airplane with
automobile:

data Transout;
set Bsamp;
Auto_Plane=Mode_Auto -Mode_Plane;

run;

Then you can use some autocall macros to analyze the posterior samples of Auto_Plane. For example, the
%POSTSUM macro provides summary statistics, and the %POSTINT macro provides equal-tail and HPD
intervals as described in the section “Autocall Macros for Postprocessing” on page 1048.

%postsum(data=Transout, var=Auto_Plane)
%postint(data=Transout, var=Auto_Plane)

You can also generate some ODS graphs of those posterior samples for diagnostic purposes, as described in
the section “Regenerating Diagnostics Plots” on page 1049.

Example 27.7: Predict the Choice Probabilities
This example shows how to obtain the posterior predictive distribution of the choice probability that each
alternative is chosen from a choice set. The posterior predictive distribution enables you to get the expected
choice probabilities of all the alternatives in the data, or even to predict market share for simulated or
hypothetical products or marketplaces that do not directly reflect the choice set in the data.

Suppose you have a data set that contains all the attribute variables (the design matrix) for all the alternatives
in a choice set. For example, in the candy study earlier in the chapter, in the section “A Simple Logit Model”
on page 1004, you can use the same eight alternatives: Dark is 1 for dark chocolate and 0 for soft chocolate;
Soft is 1 for soft center and 0 for chewy center; Nuts is 1 if the candy contains nuts and 0 if it contains no
nuts. The following data set contains the eight alternatives:

data DesignMatrix;
input Dark Soft Nuts;

datalines;
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
;
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You can use the PREDDIST statement, which obtains samples from the posterior predictive distribution of
each of the choice probabilities by using the posterior samples of parameters in the model:

proc bchoice data=Chocs outpost=Bsamp nmc=10000 thin=2 seed=124;
class Dark(ref='0') Soft(ref='0') Nuts(ref='0') Subj;
model Choice = Dark Soft Nuts / choiceset=(Subj);
preddist covariates=DesignMatrix nalter=8 outpred=Predout;

run;

%POSTSUM(data=Predout, var=Prob_1_:);

In the PREDDIST statement, the COVARIATES= option names the data set to contain the explanatory
variable values for which the predictions are established. This data set must contain data that have the same
variables that are used in the model. The NALTER= option specifies the number of alternatives in each choice
set in the COVARIATES= data set. All choice sets in the data must have the same number of alternatives. If
you omit the COVARIATES= option, the DATA= data set that you specify in the PROC BCHOICE statement
is used instead. The OUTPRED= option creates an output data set to contain the samples from the posterior
predictive distribution of the choice probabilities. Then you can use SAS autocall macros to analyze the
posterior samples. For example, the %POSTSUM macro provides summary statistics.

You can predict the choice probabilities by using the means of the posterior distributions. The results from
using the %POSTSUM macro are shown in Output 27.7.1. There is only one choice set for choice probability
prediction, in which there are a total of eight alternatives. This explains the parameter names in the first
column of the output, where the first number indexes the choice sets and the second number indexes the
alternatives in each choice set. The most preferred chocolate candy is the sixth one, Dark/Chewy/Nuts, which
takes about half the market.

Output 27.7.1 Choice of Chocolate Candies

Summary Statistics

Parameter N Mean StdDev P25 P50 P75

Prob_1_1 5000 0.05541 0.04252 0.02396 0.04529 0.07282
Prob_1_2 5000 0.13093 0.08009 0.06949 0.11487 0.17965
Prob_1_3 5000 0.00686 0.00896 0.00137 0.00366 0.00853
Prob_1_4 5000 0.01578 0.01786 0.00389 0.00966 0.02061
Prob_1_5 5000 0.21016 0.10328 0.13431 0.19301 0.27497
Prob_1_6 5000 0.49462 0.13152 0.40465 0.49734 0.58797
Prob_1_7 5000 0.02617 0.02793 0.00717 0.01683 0.03550
Prob_1_8 5000 0.06008 0.05261 0.02032 0.04571 0.08514
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